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Overview 
Computer graphic can be defined as the creation and manipulation of graphic image 

(generation, representation, manipulation, processing) by computer. 

Computer graphic started as a technique to enhance the display of information generated 

by a computer. This ability to interpret and represent numerical data in pictures has significantly 

increased the computer’s ability to represent information to the user in a clear and 

understandable form. 

 

Application of Graphics 
1. Management may be displayed as charts and diagrams (data are converted into bar charts, pie charts 

and graphs). 

2. Maps can be created for all kinds of geographic information. 

4. Simulation. 

5. Video games provide. 

6. Computer graphics user interfaces (GUIs). 

7. Photo Enhancement - Sharpening blurred photos. 

8. Medical imaging - MRIs, CAT scans, etc. - Non-invasive internal examination. 

 

Mode: divided to: 

1. Text mode: deal with characters, numbers and symbols. 

2. Graphics mode: deal with pixels. 
 

Picture Elements 
1. Pixel: is the smallest addressable screen element. It is the smallest piece of the display screen 

which we can control. 

2. Line: has patron or type. Specification: color, lighting, type, width. 

 

Types of line: 

 

 
 

3. Curve: depends on start point and end point and angle. 
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1. Graphic System 
 
1.1 Cathode Ray Tube: 

The primary output device in a graphical system is the video monitor. The main element of a 

video monitor is the Cathode Ray Tube (CRT). CRT is a technology used in traditional 

computer monitors and televisions. The image on CRT display is created by firing electrons 

from the back of the tube of phosphorus located towards the front of the screen. Once the 

electron heats the phosphorus, they light up, and they are projected on a screen. The color you 

view on the screen is produced by a blend of red, blue and green light.   

 

Components of CRT 

  

1. Electron Gun: Electron gun consisting of a series of elements (heater) and a cathode. 

The electron gun creates a source of electrons which are focused into a narrow beam 

directed at the face of the CRT.  

 

2. Control Electrode: It is used to turn the electron beam on and off. 

 

3. Focusing system: It is used to create a clear picture by focusing the electrons into a 

narrow beam. 

 

4. Deflection Yoke: It is used to control the direction of the electron beam towards 

specified positions on the phosphor-coated screen. 

 

5. Phosphorus-coated screen: The inside front surface of every CRT is coated with 

phosphors. Phosphors glow when a high-energy electron beam hits them. 

Phosphorescence is the term used to characterize the light given off by a phosphor after it 

has been exposed to an electron beam. 

 
 

Figure 1: Cathode Ray Tube (CRT) 
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1.2 Random Scan and Raster Scan Display: 

1.2.1 Random Scan Display 

Random Scan System uses an electron beam which operates like a pencil to create a line 

image on the CRT screen. The picture is constructed out of a sequence of straight-line 

segments. Each line segment is drawn on the screen by directing the beam to move from one 

point on the screen to the next, where its x & y coordinates define each point. After drawing the 

picture, the system cycles back to the first line and design all the lines of the image 30 to 60 

time each second. The electron beam is directed only to the part of the screen where the picture 

is to be drawn rather than scanning from left to right and top to bottom as in raster scan. The 

process is shown in fig.2: 

 

Figure 2: Random-scan monitors  

 

1.2.2 Raster Scan Display 

A Raster Scan Display is based on intensity of pixels in the form of a rectangular box 

called Raster on the screen. Information of on and off pixels is stored in Frame buffer. 

Televisions in our house are based on Raster Scan Method. The raster scan system can store 

information of each pixel position. Raster Scan provides a refresh rate of 60 to 80 frames per 

second. 

Frame Buffer is also known as Raster or bit map. In Frame Buffer the positions are called 

picture elements or pixels. Beam refreshing is of two types. First is horizontal retracing and 

second is vertical retracing. When the beam starts from the top left corner and reaches the 

bottom right scale, it will again return to the top left side called at vertical retrace. Then it will 

again more horizontally from top to bottom call as horizontal retracing shown in fig.3: 
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Figure 3:  

                                                                          A: Raster Scan 

B: Raster Display Image 
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1.2.3 Color CRT Monitor 

 

Each electron gun in a RGB monitor, has an assigned number of bit that determines the 

intensities of the red, green and blue phosphors, with one bit per gun eight color are possible 

(2^3=8). 
 

R G B Color 

0 0 0 Black 

0 0 1 Blue 

0 1 0 Green 

0 1 1 cyan 

1 0 0 red 

1 0 1 magenta 

1 1 0 Yellow 

1 1 1 white 
 

1.3 Flat Panel Display: 

The Flat-Panel display refers to a class of video devices that have reduced volume, weight and 

power requirement compare to CRT. 

Example: Small T.V. monitor, calculator, pocket video games, laptop computers, an 

advertisement board in elevator. 

 

1. Emissive Display: The emissive displays are devices that convert electrical energy into light. 

Examples are Plasma Panel and LED (Light Emitting Diodes). 

2. Non-Emissive Display: The Non-Emissive displays use optical effects to convert sunlight or 

light from some other source into graphics patterns. Examples are LCD (Liquid Crystal 

Device). 
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1.3.1 Plasma Panel Display 

Plasma-Panels are also called as Gas-Discharge Display. It consists of an array of small lights. 

Lights are fluorescent in nature. The essential components of the plasma-panel display are: 

1. Cathode: It consists of fine wires. It delivers negative voltage to gas cells. The voltage is 

released along with the negative axis. 

2. Anode: It also consists of fine wires. It delivers positive voltage. The voltage is supplied 

along positive axis. 

3. Fluorescent cells: It consists of small pockets of gas liquids when the voltage is applied 

to this liquid (neon gas) it emits light. 

4. Glass Plates: These plates act as capacitors. The voltage will be applied, the cell will 

glow continuously. 

The gas will slow when there is a significant voltage difference between horizontal and vertical 

wires. The voltage level is kept between 90 volts to 120 volts. Plasma level does not require 

refreshing. Erasing is done by reducing the voltage to 90 volts. 

Each cell of plasma has two states, so cell is said to be stable. Displayable point in plasma panel 

is made by the crossing of the horizontal and vertical grid. The resolution of the plasma panel 

can be up to 512 * 512 pixels. 

1.3.2 LED (Light Emitting Diode) 

In an LED, a matrix of diodes is organized to form the pixel positions in the display and picture 

definition is stored in a refresh buffer. Data is read from the refresh buffer and converted to 

voltage levels that are applied to the diodes to produce the light pattern in the display. 

1.3.3 LCD (Liquid Crystal Display) 

Liquid Crystal Displays are the devices that produce a picture by passing polarized light from 

the surroundings or from an internal light source through a liquid-crystal material that transmits 

the light. 

LCD uses the liquid-crystal material between two glass plates; each plate is the right angle to 

each other between plates liquid is filled. One glass plate consists of rows of conductors 

arranged in vertical direction. Another glass plate is consisting of a row of conductors arranged 

in horizontal direction. The pixel position is determined by the intersection of the vertical & 

horizontal conductor. This position is an active part of the screen. 

Liquid crystal display is temperature dependent. It is between zero to seventy degree Celsius. It 

is flat and requires very little power to operate. 
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2. Look-Up Table 

Image representation is essentially the description of pixel colors. There are three primary 

colors: R (red), G (green) and B (blue). We may allocate 3 bits for each pixel, with one bit for 

each primary color. The 3-bit representation allows each primary to vary independently between 

two intensity levels: 0 (off) or 1 (on). Hence each pixel can take on one of the eight colors. 

Bit 1:r Bit 2:g Bit 3:b Color name 

0 0 0 Black   اسود 

0 0 1 Blue  ازرق 

0 1 0 Green  اخضر 

0 1 1 Cyan   شذري 

1 0 0 Red  احمر 

1 0 1 Magenta  بنفسجي 

1 1 0 Yellow  اصفر 

1 1 1 White ابيض     

 
If a fourth bit is used for the brightness' or intensity of the displayed color it results in (2^4=16) 

possible colors. When the brightness bit equals one another set of eight bright colors is 

produced. 

 

Note: if True Color is 24 bit then displayed color = 0 to 2
24

-1. 

In RGB 24 bit Red (8 bit = 0 to 2
8
-1), Green (8 bit = 0 to 2

8
-1), Blue (bit= 0 to 2

8
-1) 

 

3. Screen Clarity 
 

The screen clarity depends on three qualities: 
 

3.1 Resolution 

The number of scan lines and the number of pixels on a line or dots per unit area. The more 

pixels per square inch, and the better of resolution. 

 Low resolution 300 scans lines & 400 pixels (lines). 

 High resolution more than 1000 scan lines & 1000 pixels (lines). 
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3.2 Dot Pitch 

It is the amount of space between the center of adjacent pixels, the closer the dots, the crisper 

the image. For crisp images, dot pitch should be less than 0.31 millimeter. 

 

3.3 Refresh Rate 

It is the number of times per second that the pixels are recharged so that their glow remains 

bright. In general, displays are refreshed 45 to 100 times per second. 

 

4. The graphic display   
The graphic display consists of three components: 

 

a) Frame buffer. 

b) Display controller. 

c) Scan conversion algorithms. 
 

a) Frame buffer   

Each screen pixel corresponds to a particular entry in a two – dimensional array residing 

in memory. This memory is called a frame buffer or bit map see figure 4. 

 

           
Figure 4: Bit Map 

 

The number of rows in the frame buffer array equal the number of raster lines on the 

display screen, and the number of columns in this array equals the number of pixels on each 

raster line. The current tends is to have the frame buffer accessible to CPU of the main memory, 

to allowing rapid of the storage image. 

 

To display a pixel on the screen, a specific value is placed into the corresponding 

memory location in the frame buffer array. In figure (5), a value of 1 placed in a location in the 

frame buffer results in the corresponding (black) pixel displayed on the screen. 
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Figure 5: Bit Plane of Frame Buffer 

 

 

Number of pixels depending on screen type, so that we have many types likes: 

 

1) Monochrome 2 color (black, green). 

2) CGA (Color Graphic Adapter) 16 color 320 X 200 . 

3) EGA (Enhanced Graphic Adapter) 16 color 640 X 480 . 

4) VGA (Video Graphic Adapter) 256 color 640 X 480 . 

5) SVGA (Super Video Graphic Adapter) 256 color 1024 X 768 . 

 

Each pixel and corresponding memory location in the frame buffer is accessed by an (X,Y) 

integer coordinate pair. The X value refers to the rows; the Y value refers to the columns 

position. 

 

b) Display controller   

The hardware device reads the contents of frame buffer into a video buffer which then 

converts the digital representation of a string of pixel values into analog voltage signals that are 

sent serially to the video screen. Whenever the display controller encounters a value of 1 in a 

single – bit – plane frame buffer a high – voltage. Signal is sent to the CRT which turns on the 

corresponding screen pixel. 
 

 
c) Scan conversion   

Images are usually defined in terms of equation for example A + B = 5 or graphic 

descriptions, such as “draw a line from A to B“. Scan conversion is the process of converting 

this abstract representation of an image into the appropriate pixel values in the frame buffer.  

 

 



12 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part Two 
 

 

Drawing Elementary Figures 
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2. Scan Conversion Definition 

It is a process of representing graphics objects a collection of pixels. The graphics 

objects are continuous. The pixels used are discrete. Each pixel can have either on or off state. 

The circuitry of the video display device of the computer is capable of converting binary 

values (0, 1) into a pixel on (1) and pixel off (0) information. Using this ability graphics 

computer represent picture having discrete dots. Any model of graphics can be reproduced with 

a dense matrix of dots or points.  

Examples of objects which can be scan converted 

1. Point 

2. Line 

3. Sector 

4. Arc 

5. Ellipse 

6. Rectangle 

7. Polygon 

8. Characters 

9. Filled Regions 

The process of converting is also called as rasterization. The algorithms implementation varies 

from one computer system to another computer system. Some algorithms are implemented 

using the software. Some are performed using hardware or firmware. Some are performed using 

various combinations of hardware, firmware and software. 

 

2.1 Plotting Point   

The term pixel is a short form of the picture element. It is also called a point or dot. It is 

the smallest picture unit accepted by display devices. A picture is constructed from hundreds of 

such pixels. Pixels are generated using commands. Lines, circle, arcs, characters; curves are 

drawn with closely spaced pixels. To display the digit or letter matrix of pixels is used. 

The closer the dots or pixels are, the better will be the quality of picture. Closer the dots are, 

crisper will be the picture. Picture will not appear jagged and unclear if pixels are closely 

spaced. So the quality of the picture is directly proportional to the density of pixels on the 

screen. 
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Pixels are also defined as the smallest addressable unit or element of the screen. Each pixel can 

be assigned an address as shown in fig.6: 

 

Figure 6: Address of a pixel 

Each pixel has some co-ordinate value. The coordinate is represented using row and column. 

P(5,5) used to represent a pixel in the 5
th
 row and the 5

th
 column. Each pixel has some intensity 

value which is represented in memory of computer called a frame buffer (refresh buffer). This 

memory is a storage area for storing pixels values using which pictures are displayed. It is also 

called as digital memory. Inside the buffer, image is stored as a pattern of binary digits either 0 

or 1. So there is an array of 0 or 1 used to represent the picture. In black and white monitors, 

black pixels are represented using 1's and white pixels are represented using 0's. In case of 

systems having one bit per pixel frame buffer is called a bitmap. In systems with multiple bits 
per pixel it is called a pixmap. 

 Each pixel is accessed by a positive integer (x,y) coordinate pair, the value x start at 

origin 0, and increase from left to right, the y value start at 0 increases from top to bottom, as in 

figure (7).  

 
Figure 7: Screen of Positive Integer (x,y) Coordinate  

To draw a point on the display screen, a point plotting procedure is required. We assume the 

availability of the command:  
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Putpixel (x , y , color)  

Ex.: Putpixel (6 , 3 , 3)  

 

 
 

The drawing on the screen starts from top to down, and from left to right. The pixel coordinates 

on the screen (VGA 640×480) is shown in figure 8 below: 

 
 

 
Figure 8: Pixel coordinates on the screen (VGA 640×480) 

 

2.2 Line Drawing Algorithms   

A straight line may be defined by two endpoints & an equation. To draw a line, you need 

two points between which you can draw a line. In fig.9 the two endpoints are described by 

(x1,y1) and (x2,y2). The equation of the line is used to determine the x, y coordinates of all the 

points that lie between these two endpoints. 

 
 

Figure 9: Two endpoints of a line 
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Using the equation of a straight line, y = mx + b where m = 
  

  
 and b = the y interrupt, we can 

find values of y by incrementing x from x =x1, to x = x2. By scan-converting these calculated x, 

y values, we represent the line as a sequence of pixels. 

 

 In order to draw a line, it is necessary to determine which pixels lie nearest the line and 

provide the best approximation to the desired line. The accuracy and quality of the displayed 

line depends on the resolution of the display device. High resolution displays draw lines that 

look straight and continue and start and end accurately. Lower resolution displays may draw 

lines with gaps figure 10. 

 
Figure 10: Low and high resolution line 

 
 

2.2.1 Draw Horizontal Line   

To draw horizontal line, the y value is fixed and the value x varies. The following codes draw 

horizontal line from ( xstart , y ) to ( xend , y ). 
 

for x := xstart to xend do 

putpixel ( x , y , white ) ; 
 

If xstart > xend then ( to ) in the ( for ) loop must be replaced by down to. 

 

2.2.2 Draw Vertical Line   
To draw vertical line, the x value is fixed and y value varies. The following codes draw a 

vertical line from ( x , ystart ) to ( x , yend ). 
 

for y := ystart to yend do 

putpixel ( x , y , white ) ; 

If ystart > yend then ( to ) in the ( for ) loop must be replaced by down to. 
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2.2.3 Draw Diagonal Line   
To draw a diagonal line with a slope equal to +1, we need only repeatedly increment by one 

unit both the x and y values from the starting to the ending pixels. The slope is defined as the 

change in y value divided by change in x values.  
 

  Slope = 
      

     
  =  

  

  
 

 

The following codes draw a diagonal line: 
 

x := xstart ; 

y := ystart ; 

i := 0 ; 

while ( x + i ) <= xend do 

  begin 

       putpixel ( x + i , y + i , white ) ; 

       i := i + 1 ; 

end ; 

 

To draw a line with a slope -1 , replace y+i by y-i in the code above. 
 

Example  

Show the tracing to draw a diagonal line from ( 0 , 0 ) to ( 3 , 3 ). 
 

Solution: 

Point 1 ( 0 , 0 ) , point 2 ( 3 , 3 ). 

 

Note: if the slope is zero then line is a horizontal dy(y2-y1)= (y1-y2)=0   and 

          if slope is undefined then line is a vertical dx(x2-x1)= (x1-x2)=0     but 

if slope line is not equaled +1 or -1 then use one of the three algorithms below to draw 

diagonal lines:  

 

A) Direct use of line equation Y=mx+b. 

B) Simple DDA (Digital Differential Analyzer) 

C) Bresenham’s algorithm 
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2.3 Arbitrary Line Algorithm 
The display screen can be illuminated only at pixels locations; therefore a raster scan 

display has a staircase effect that only approximates the actual line as shown in figure 11:  

 

 
Figure 11: Arbitrary Slopee Line 

 

2.3.A Using line equation “Y=mX+b” (Direct Method) 

In this method, draw a line between two points by drawing a group of pixels using the 

command putpixel (x, y, color), with substituting in straight line equation’s :Y = m × X + b, 

where (m) is the slope and (b) is a constant which represents the y interrupt figure 12. The 

constant b is found as: if the endpoints of line are (x1, y1) (x2, y2) then the    b = y1-mx1    or     

b=y2-mx2. 
  
Direct method for drawing lines can be shown in algorithm below: 
 

Input Xstart,Ystart,Xend,Yend 

Output: Arbitrary line 

{ 

m= 
            

           
  

b= Ystart – m *Xstart; 

for x= Xstart to Xend 

{  

y=m*x+b+0.5; 

putpixel(x,y,color); }   } 

 

 
 

Figure 12: Drawing line using straight line equation  
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Example: A line with starting point as (0, 0) and ending point (6, 18) is given. Calculate value 

of intermediate points and slope of line. 

Solution: P1 (0,0)  P7 (6,18) 

              x1=0 

              y1=0 

              x2=6 

              y2=18 

 

               

The equation of line is 

              y =m x + b 

              y = 3x + b..............equation (1) 

put value of x from initial point in equation (1), i.e., (0, 0) x =0, y=0 

              0 = 3 * 0 + b 

              0 = b ⟹ b=0 

put b = 0 in equation (1) 

              y = 3x + 0 

              y = 3x 

Now calculate intermediate points 

    Let x = 1 ⟹ y = 3 * 1 ⟹ y = 3 

    Let x = 2 ⟹ y = 3 * 2 ⟹ y = 6 

    Let x = 3 ⟹ y = 3 * 3 ⟹ y = 9 

    Let x = 4 ⟹ y = 3 * 4 ⟹ y = 12 

    Let x = 5 ⟹ y = 3 * 5 ⟹ y = 15 

    Let x = 6 ⟹ y = 3 * 6 ⟹ y = 18 

So points are:  

              P1 (0,0) 

              P2 (1,3) 

              P3 (2,6) 

              P4 (3,9) 

              P5 (4,12) 

              P6 (5,15) 

              P7 (6,18) 
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Example: trace the line equation to draw the line that endpoints are (1, 5), (7, 2), and draw the 

line in screen coordinate. 

 

Solution: 

dx=7-1=6;  dy=2-5= -3;   m= -3/6= -1/2 =-0.5;  b=5- (-0.5)*1=5.5 

 

dx>0 then increment X 

 

X Y Point(X,Y) Plot(X,Y) 

1 1*-0.5+5.5 (1,5) (1,5) 

2 2*-0.5+5.5 (2,4.5) (2,5) 

3 3*-0.5+5.5 (3,4) (3,4) 

4 4*-0.5+5.5 (4,3.5) (4,4) 

5 5*-0.5+5.5   (5,3) (5,3) 

6 6*-0.5+5.5 (6,2.5) (6,3) 

7 7*-0.5+5.5 (7,2) (7,2) 

 

 

2.3.B  DDA Algorithm  https://www.youtube.com/watch?v=Qyt1ccpm1hY 

Digital Differential Analyzer (DDA) algorithm is an incremental method of scan conversion of 

line. In this method calculation is performed at each step but by using results of previous steps. 

It work on the principle of simultaneously incrementing x and y by small steps proportional to 

the first derivatives of x and y. The slope a line between the two points (x1,y1), (x2,y2) is given 

by m=(y2-y1)/(x2-x1). 

  

The algorithm starts with the initial values x=x1 & y=y1, the coordinates are then 

incremented by Δy and Δx respectively to find the next points coordinates. The value of x and y 

are rounded to integers and a pixel is set at that point. This step is repeated until the second end 

point (x2, y2) is reached. 
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// Input: x1, y1, x 2, y2. 

// Output: Arbitrary line 

1: dx=x2-x1:dy=y2-y1 
// approximate the line length 

2: if (abs(dx)>abs(dy)) then length=abs(dx) 

    else   length=abs(dy) 
// select the larger of  Δy or Δx to be raster unit   

3: xinc=dx/length:  yinc=dy/length 

4: x=x1:  y=y1 

5: for i=0 to length 

   5.1: putpixel(x, y,color) 

   5.2: x=x +xinc :  y=y +yinc 

6: next i 

 

Explain DDA algorith 

 

1- Read start and end coordinates 

(X0,Y0),    (Xn,Yn) 

Step1: calculate ΔX, ΔY, M 

           ΔX=Xn-X0 

           ΔY=Yn-Y0 

           M= ΔX/ΔY 
 

Step2: find number of points between start and end coordinates. 

             If (abs(ΔX)> abs(ΔY)) 

             Length=k= abs(ΔX) 

             Else 

             k= abs(ΔY) 
 

Step3: current point (Xp,Yp), next point (Xp+1,Yp+1), find the next point by following 3 

cases: 

             Case1: if M<1 

                         Xp+1= (1+Xp)                   

                         Yp+1=(M+Yp)                   
 

             Case2: if M=0 

                         Xp+1= (1+Xp)       

                         Yp+1=(1+Yp) 
 

             Case3: if M>1                                      

                        Xp+1= (1/m+Xp)                     

                          Yp+1=(1+Yp)     
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Example 

Start point (5,6), end point(8,12) 

 

Solution 

1- ΔX=8-5=3 

ΔY=12-6=6 

M=ΔY/ΔX = 6/3=3 

 

2- Calculate number of points 

/ ΔX/ < / ΔY/ 

3<6 

Length = k = ΔY = 6 

 

3- M>1 satisfied 

Xp+1=1/m + Xp 

Yp+1=1+Yp 

 

                                            Xp+1=1/2 + Xp             Yp+1=1+Yp 

X0 Y0 XP+1 YP+1 Round(Xp+1, Yp+1) 

5 6 5.5 7 (6,7) 

  0.5+5.5=6 8 (6,8) 

  0.5+6=6.5 9 (7,9) 

  0.5+6.5=7 10 (7,10) 

  0.5+7=7.5 11 (8,11) 

  0.5+7.5=8 12 (8,12) 

   stop  

 

Where: 

XP = previous 

XP+1 = next point 
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Example: Draw a line from (0,0) to (5,5) using DDA. 

Solution:  

x1=0, y1=0, x2=5, y2=5. 

abs(x2 - x1)=5, abs(y2 - y1)=5. 

Length=5. 

  
x=x1+0.5 × sign (Δx )=0+0.5×sign(1)=0.5 

y=y1+0.5 × sign (Δy )=0+0.5×sign(1)=0.5 

 

Incrementing through the main loop yields:  

 

i plot x y 

  0.5 0.5 

1 (1,1)   

  1.5 1.5 

2 (2,2)   

  2.5 2.5 

3 (3,3)   

  3.5 3.5 

4 (4,4)   

  4.5 4.5 

5 (5,5)   

  5.5 5.5 

6 stop   
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Example: Trace the simple DDA algorithm to draw a line between the two points (23,33), 

(29,40). 

 

Solution: 

 

dx=29-23=6 

dy=40-33=7 

Length=7 

Xinc=6/7 =0.857 

Yinc=7/7=1. 

X Y Plot(X) Plot(Y) 

23 33 23 33 

23.857 34 24 34 

24.714 35 25 35 

25.571 36 26 36 

26.429 37 26 37 

27.286 38 27 38 

28.143 39 28 39 

 

Example: If a line is drawn from (2, 3) to (6, 15) with use of DDA. How many points will 

needed to generate such line? 

Solution: P1 (2,3)       P11 (6,15) 

                x1=2 

                y1=3 

                x2= 6 

                y2=15 

                dx = 6 - 2 = 4 

                dy = 15 - 3 = 12 

                m = dy/dx = 12/4 = 3 

For calculating next value of x takes x = x +  
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2.3.C Bresenham's Line Drawing Algorithm 

It is an efficient method because it involves only integer addition, subtractions, and 

multiplication operations. These operations can be performed very rapidly so lines can be 

generated quickly. In this method, next pixel selected is that one who has the least distance from 

true line. This algorithm is designed so that each iteration changes one of the coordinate values 

by ±1. The other coordinate may or may not change depending on the value of an error term 

maintained by the algorithm. This error term record the distance measure perpendicular to the 

axis of greatest movement between the exact path of the line and the actual dots generated. 

 

If the x-axis is the axis of greatest movement, then at each iteration the x coordinates of the 

line is incremented, and the slope of the line by dy/dx is added to the error term fig.(13.b.) 

Whether to increment the y coordinate of the current point, a positive e value indicates that 

the exact path of the line lies above the current point, therefore the y coordinate is 

incremented, and 1 is decremented from e.  

https://www.youtube.com/watch?v=ujyCaZJIDcg 

 

If e is negative the y coordinate value is left unchanged, and vise verse if y-axis is greatest 

movement. https://www.youtube.com/watch?v=h3gDB89h0os&t=24s (example) 

 

Note:-If X-axis is greatest movement the initial e =dy/dx. But If Y-axis is greatest movement 

the initial e =dx/dy  

 

For example, as shown in figure (13.a), from position (2, 3) you need to choose between (3, 3) 

and (3, 4). You would like the point that is closer to the original line. 

 

                              -a-                                                                      -b- 

Figure 13: a: Choose between two 

b: the slope 

 

As an example, a line in the first quadrant (line with slope between 0 and 1) see figure 14. 

 

https://www.youtube.com/watch?v=h3gDB89h0os&t=24s
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Figure 14: Slope between 0 and 1 

 
 

This algorithm is X-axis greatest movement and slope is positive. 
 

1: dx=x2-x1: dy=y2-y1: e=(dy/dx)-0.5: x=x1: y=y1; 

2: for i=0 to |dx| 

    2.1: plot pixel (x, y) 

    2.2: if (e>0) then if (y1>y2) y=y-1   

          else  

          y=y+1 

          e=e-1 

   2.3: if(x1>x2) then x=x-1 

          else x=x+1 

   2.4: e=e+ (dy/dx) 

3: next i 
 

 

Conclusion: 

1- If the slope of the required line through (0,0) > 0.5, then it is intercept with line x=1, and will 

be closer to the line y=1 than to the line y=0. Hence, the screen point at (1,1) is better to 

represent the path of the line than that at (1,0). 
 

2- If the slope of the required line through (0,0) < 0.5 then the opposite is true. 
 

3- For the slope= 0.5, the algorithm chooses point (1,1) to plot. 
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Example:  
By using Bresenham algorithm draw a line by used the following points ( 0 , 0 ) and ( 5 , 3 ). 
 

Solution: 

x=0,     y=0,     Δx=5,   Δy=3      m=3/5=0.6   e=dy/dx - 0.5 

i plot x y e 

  0 0 0.1  0.6-0.5 

1 ( 0 , 0 )  1 -0.9 

  1  -0.3 

2 ( 1 , 1 ) 2   0.3 

3 ( 2 , 1 )  2 -0.7 

   3   -0.1 

4 ( 3 , 2 ) 4  0.5 

5 ( 4 , 2 )  3 -0.5 

  5   0.1 

6 stop    

 

Example: Trace Bresenham algorithm to draw a line between the two points (50, 65), (59, 68). 

 

Solution: 

dx= 59-50= 9 

dy= 68-65= 3 

m= dy/dx =3/9 = 0.333 

e=0.333 – 0.5 = -0.167 

X Y  e 

50 65 -0.167 +m(2.4) 

51 65 0.166 -1+m (2.4+2.2) 

52 66 -0.501 +m (2.4) 

53 66 -0.168 +m(2.4) 

54 66 0.165 -1+m(2.4+2.2) 

55 67 -0.502 +m(2.4) 

56 67 -0.169 +m(2.4) 

57 67 0.164 -1+m(2.4+2.2) 

58 68 -0.503  
 

 Note: This algorithm uses in slope of line positive but in negative slope replaces e>0 to e<0  

and e=e-1 to e=e+1 and coordinate y=y+1 to y=y-1   Or     x=x+1 to x=x-1 to obtain algorithms: 
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1: dx=x2-x1: dy=y2-y1: e=(dy/dx)+0.5: x=x1: y=y1; 

2: for i=0 to |dx| 
    2.1: plot pixel (x, y) 

    2.2: if (e<0) then if (y1>y2) y=y-1 

          else y=y+1 

                 e=e+1 

   2.3: if(x1>x2) then x=x-1 

         else x=x+1 

   2.4: e=e+ (dy/dx) 

3: next i 

Example: Trace the Bresenhams algorithm to draw a line between the two points (1, 5), (7, 2). 

 

Solution: 

 

dx= 7-1= 6; 

dy= 2-5= -3 

m=dy/dx=-3/6= -0.5       

{Negative slope} uses algorithm modify of Bresenhams  

e= -0.5 + 0.5 = 0 

 

  

X Y e 

1 5 0 +m 

2 5 -0.5 +1+m 

3 4 0 +m 

4 4 -0.5 +1+m 

5 3 0  +m 

6 3 -0.5 +1+m 

7 2 0   
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Example: Trace the line where end points (0,3), (2,-2) by Bresnham's Method. 
 

Solution: 

dx= 2-0= 2 ,     dy= -2 -3= -5, 

 

|dy|>|dx|Y is Greatest move: Change for each step, 

m=(dx/dy)= 2/-5 = -0.4 
 

m<0 then e<0 then change X otherwise un-change X because less move, 

e=(dx/dy)+0.5= 0.1 , X = 0 , Y= 3 

  

X Y e Status of e  

0 3 0.1 +(dx/dy) 

0 2 -0.3 +1+(dx/dy) 

1 1 0.3 +(dx/dy) 

1 0 -0.1 +1+(dx/dy) 

2 -1 0.5 +(dx/dy) 

2 -2 0.1 Finish 

 

dx> 0 increment X 

dy<0 deccrement Y 
 

Example: Starting and Ending position of the line are (1, 1) and (8, 5). Find intermediate 

points.   

Solution:  

                x1=1 

                y1=1 

                x2=8 

                y2=5 

                

                dx= x2-x1=8-1=7 

                dy=y2-y1=5-1=4 

                 

      I1=2* ∆y=2*4=8 

                I2=2*(∆y-∆x)=2*(4-7)= -6 

                

     d = I1-∆x=8-7=1    // distance variable 
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x y d=d+I1 or I2 

1 1 d+I2=1+(-6)= -5 

2 2 d+I1=-5+8=3 

3 2 d+I2=3+(-6)= -3 

4 3 d+I1=-3+8=5 

5 3 d+I2=5+(-6)= -1 

6 4 d+I1=-1+8=7 

7 4 d+I2=7+(-6)=1 

8 5 
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Bresenham Algorithm(2) 

DA top 

DB  bottom 

P0= 2Δy-Δx 

Δx= x2-x1 

Δy= y2-y1 

M= Δy/ Δx 

1) Calculate decision variable OR error term e 

              e= DB-DA 

e<0   when DB < DA 

e>=0   DB >= DA 

2) Find slope M, decision parameter P0  2Δy – Δx 

M<1 OR M>=1 

P<0 P>=0  P<0 P>=0 

Xi+1=Xi+1 Xi+1=Xi+1  Xi+1=Xi Xi+1=Xi+1 

Yi+1=Yi Yi+1=Yi+1  Yi+1=Yi+1 Yi+1=Yi+1 

     

P1=P0+2ΔY P1=P0+2ΔY-2ΔX  P1=P0+2ΔX P1=P0+2ΔX-2ΔY 
 

Algorithm: 

Step1: Start 

Step2: Declare x1, y1, x2, y2. 

Step3: Calculate     dx = x2 - x1 

                               dy = y2 - y1 

Step 4: Calculate slope, m = dy / dx. 

Step5: For m < 1: Calculate initial decision variable: P = 2dy - dx. 

Step6: while (x1 <= x2) 

           if(P < 0): 

                  xk = xk + 1 

                  P = P + 2dy 

                  yk = yk 

             else : 

                  xk = xk + 1 

                  P = P + 2dy - 2dx 

                  yk = yk + 1 

Step 7: Plot ( xk , yk ) 

Step 8: End 
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Example 

Start point (1,1) and end point (5,3) 

Solution 
ΔY=2         ΔX=4                   M= ΔY/ ΔX   =  0.5 
   

M<1 

1) P0  2Δy – Δx  
 

P0=2*2-4=0     P>=0 

 

Xi+1=Xi+1 

Yi+1=Yi+1 
 

Xi+1=1+1=2 

Yi+1=1+1=2 
 

P1=P0+2ΔY-2ΔX  
P1=0+2*2-2*4= -4   P<0 

 

2) Xi+1=Xi+1 

          Yi+1=Yi 
  
Xi+1=2+1=3 

Yi+1=2 

           P1=P0+2ΔY 
           P1= -4+2*2=0     P>=0 

 

3) Xi+1=Xi+1 

Yi+1=Yi+1 
 

Xi+1=3+1=4 

Yi+1=2+1=3 
 

P1=P0+2ΔY-2ΔX  
P1=0+2*2-2*4= -4   P<0 

 

4) Xi+1=Xi+1 

          Yi+1=Yi 
 

Xi+1=4+1=5 

Yi+1=3 

P Xi Yi Xi+1 Yi+1 

0 1 1 2 2 

-4 2 2 3 2 

0 3 2 4 3 

-4 4 3 5 3 

Stop  Stop 
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Bresenham's Line Algorithm for |(m = Δy / Δx)| < 1 

 

1. Read the line end points (x1, y1) and (x2 , y2) such that they are not equal. 

   // If equal, then plot that point and exit 

2. Δx= |x2-x1|     and   Δy= |y2-y1|  

3. // Initialize starting point 

        x=x1 

        y=y1  

4.  e=2Δy-Δx   //Initialize value of decision variable or error to compensate for nonzero intercepts 

 

5. i=1       //Initialize counter 

6. Plot (x,y) 

7. While (e>=0)     //when e ≥ 0, error is initialized with e = e - 2*Δx. This is continued till error is negative. 

In each iteration y is incremented by 1. 

          { y=y+1 

            e=e-2Δx   } 
   // when e < 0, error is initialized to e = e + 2*Δy. In both the cases x is incremented by 1 

    x=x+1 

    e=e+2Δy 

8. i=i+1 

9. If (i≤ Δx) then goto step 6 

10. Stop   
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Example Consider the line from (5, 5) to (13, 9), use the Bresenham's algorithm to rasterize the 

line. 

 

Solution: Evaluating steps 1 through 4 in the Bresenham's algorithm we have, 

 

 x = ∣13-5∣=8 

 y = l9-5∣=4 

 

x=5 , y=5. 

 

e=2Δy-Δx 

  = 2*4-8 =0 

Tabulating the results of each iteration in the step 5 through 10 

 

i plot x y e 

  5 5 0 

1 (5,5) 6 6 -16 

    -8 

2 (6,6) 7 6 0 

3 (7,6) 8 7 -16 

    -8 

4 (8,7) 9 7 0 

5 (9,7) 10 8 -16 

    -8 

6 (10,8) 11 8 0 

7 (11,8) 12 9 -16 

    -8 

8 (12,9) 13 9 0 

9 (13,9) 14 10 -16 

    -8 
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Part Three 
 

 

Circle, Ellipse Drawing 

Algorithms 
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3. Circle Drawing Algorithms 

Circles are the most used curves to elementary graphics. Circle is an eight-way symmetric 

figure. The shape of circle is the same in all quadrants. In each quadrant, there are two octants. 

If the calculation of the point of one octant is done, then the other seven points can be calculated 

easily by using the concept of eight-way symmetry. For drawing, circle considers it at the 

origin. If a point is P1(x, y), then the other seven points will be as shown in figure 15. So we 

will calculate only 45°arc. From which the whole circle can be determined easily. 

 

 
 

Figure 15: Eight-way symmetric of a circle 

 

If we want to display circle on screen then the putpixel function is used for eight points as 

shown below: 

 

putpixel (x, y, color) 

putpixel (x, -y, color) 

putpixel (-x, y, color) 

putpixel (-x, -y, color) 

putpixel (y, x, color) 

putpixel (y, -x, color) 

putpixel (-y, x, color) 

putpixel (-y, -x, color) 
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There are two standards methods of mathematically defining a circle centered at the origin. 

3.1  Defining a circle using Polynomial Method (Circle Equation ) 

3.2  Defining a circle using Polar Co-ordinates 

 

3.1 Defining a circle using Polynomial Method (Circle Equation)    

 

A circle is specified by the coordinate of its center (xc, yc) and its radius(r). 
 

• The circle equation is: 

 (x-xc)² + (у-уc)² = r²  …………….. (1)  

 

If the center of the circle is at the origin(0,0) fig. 16 the equation is:  

x^2 + y^2= r^2 ………. (2)  
 

Solving equation (1) for y obtain   y = yc± √          
  

Solving equation (2) for y obtain y = ± √         
 

 

x , у  point on the boundary 

xc , yc  the center of the circle 

r  radius  

 
Figure 16: Center of the circle is at the origin(0,0)     

 

 

Note: to draw a circle increment x by one unit form –r to r and so the above equation to solve 

for the two y value at each step (convert to integer).  
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Example circle has center (100,-20) & radius 6 units find circle points. 
 

Solution 

 

x (-6 to 6) y1= + √          y2= - √         x+xc y1+yc y2+ yc 

-6 0 0 94 -20 -20 

-5 y1= + √          Y2= - √          95     √       √   

-4      

-3      

-2      

-1      

0      

1      

.      

.      

6      

 

This method of drawing a circle is inefficient because: 

 

1. We are not taking advantage of symmetry of the circle. 

2. The a mount of processing time required to perform the squaring and square root operation 

repeatedly. 

 

The algorithm in circle equation is: 

 

1: x:= -r : dt:= 1/r    //increment unit in circle 

2: while (x<= r) 

2.1: y1= +sqrt(r*r-x*x) :  y2:= -sqrt(r*r-x*x); 

2.2: putpixel(xc +x, yc+y1,color) : putpixel(xc +x, yc+y2,color) 

2.3 x=x+dt 

3: goto 2 

      

Example: Draw a circle by using circle equation, when R=5, Xc=0 , Yc=0. 

 

Solution: 

 

for x: = -R To + R 

y = √           

 

for x:=  -5 to +5 

y = √           
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X Y Plot 

-5 0 (-5,0) 

-4 -3,+3 (-4,-3),(-4,3) 

-3 -4,+4 (-3,-4),(-3,4) 

-2   

-1   

0 -5,+5 (0,-5),(0,5) 

1   

2   

3 -4,+4 (3,-4),(3,4) 

4 -3,+3 (4,-3),(4,3) 

5 0 (5,0) 

 

3.2 Defining a circle using Polar Co-ordinates   

The second method of defining a circle makes use of polar coordinates as shown in fig.17: 

              x= r cos θ             y = r sin θ 

 

Where: 

θ=current angle 

r = circle radius 

x = x coordinate 

y = y coordinate 

By this method, θ is stepped from 0 to  & each value of x & y is calculated. 

 

 
 

Figure 17: Polar coordinates 
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Polar coordinates Algorithm 

Step1: Set the initial variables: 

            r = circle radius 

            (h, k) = coordinates of the circle center 

                i = step size 

                θend= (22/7)/4 

                θ=0 

Step2: if θ>θend then stop. 

Step3: Compute 

            x = r * cos θ            y= r*sin θ 

Step4: Plot the eight points, found by symmetry i.e., the center (h, k), at the current (x, y) 

coordinates. 

Plot (x + h, y +k)               Plot (-x + h, -y + k) 

Plot (y + h, x + k)              Plot (-y + h, -x + k) 

Plot (-y + h, x + k)             Plot (y + h, -x + k) 

Plot (-x + h, y + k)             Plot (x + h, -y + k) 

Step5: increment θ=θ+i 

Step6: goto step (2). 

Or 

1: dt = 1/r :    th=0 :    pi=22/7.0 

2: while (th<=2 * pi) 

2.1: x=r*cos (th) : y:=r*sin (th) 

2.2: putpixel( xc +x, yc +y,color) 

2.3: th= th+ dt 

3: goto 2 
 

Example trace the algorithm that uses the polar representation to generate eight points of the 

circle centered at (300,150) with a radius of 5 units. 

 

Solution dt= 1/r =1/5= 0.2;    x= r* cos (Ө);    y= r * sin (Ө); 

 

Ø x y x+xc y+yc Plot x Plot y 

0 5 0 305 150 305 150 

0.2 4.9 0.993 304.9   150.993    305 151 

0.4 4.605 1.947 304.605    151.947 304 152 

… …      
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3.2.1 Incremental drawing of circles 

A circle is specified by the coordinates of its center (xc,yc) and its radius r as shown in figure 18. 

The most familiar equation of the circle is: 

 

(x - xc)
2
 + (y - yc)

2 
= r

2
 ,   y= yc ± √          

  
 

 

If the center of the circle is at the origin (0,0) the above equation reduces to:  

 

x
2
+y

2 
= r

2
 ,   y = √          for y≥0. 

 

 
Figure 18: Circle Coordinates and Radius 

 

 

Where: 

x,y →are coordinates of the circle center point. 

r → is the radius of the circle. 
          

 

باستخدام دوال الجيب والجيب تمام على اعتبار ان المركز في  rحساب احداثيات اي نقطة على محيط دائرة نصف قطرها = 

   نستخدم المعادلات ادناه: نقطة الاصل

cos (ө) = x / r 

x = r . cos (ө) 

 

sin (ө) = y / r 

y = r . sin (ө) 
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One method of eliminating the problem of plotting points evenly spaced around the circle is to 

use polar representation of a circle:  
 

x= xc+ r cosθ ,  y = yc + r sinθ 

  

Where: θ → is measured in radians from 0 to 2π 

arc length = r ×θ ,  r=radius (constant) 
 

 
                                                                                                       

Figure 19: Circle Coordinates with equal spacing (arc length) 

                                                            

In this method we depend on angles to draw the circle, since it propose the first angle θ=0, and 

end angle is (360). The change in angle (dθ) must be small value dθ=1/r.  
 

Equal increments of θ =dθ which is result in equal spacing (arc length) between successively 

plotted points as shown in figure 19. The incremental equations are: 
 

x2= x1 cos dθ  - y1 sin dθ 

y2= y1 cos dθ  + x1 sin dθ 
 

To generate a circle we start at x1=0, y1=r, and fixed angle increment dθ, we can compute all 

points on the circle by calculating cos dθ and sin dθ only once.  
 

Circle may be drawn using the command putpixel() and the command circle(x,y,r). The method 

of drawing a circle by increment the x values by one unit from (-r) to (+r) and use circle 

equation to solve y values at each step is inefficient for the following reasons: 
 

1-The large amount of processing time required to perform squaring and square root operations 

repeatedly. 
 

2- The resulted circle is dense and flat near the y-axis, and has large gaps near x-axis. Figure 20: 

 
Figure 20: Dense and flat near the y-axis 
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The algorithm of Incremental drawing of circles is: 

 

1: x=r : y=0: th=0 : dt=1/r : ct=cos(dt) : st=sin(dt) 

2: while (th<= 2*pi) 

    2.1: plot pixel(x +xc, y +yc) 

    2.2: t=x 

           x=x*ct - y*st; ( Xn+1 =Xn*cos(ΔӨ) –Yn*sin(ΔӨ)) 

           y=y*ct + t*st; (Yn+1 =Yn*cos(ΔӨ)+Xn*sin(ΔӨ)) 

   2.3: th+=dt;   // represent counter 

3: goto 2   // if not reach 360
o
 

 

4. Symmetric of circle points  
A circle is a symmetrical figure. Any circle-generating algorithms may be used to plot eight 

points for each value that the algorithm calculates. As shown in the figure 21, only one octant of 

the circle has to be generated. A successive reflection obtains the other parts. 
 

  

if a point (x,y) lies on the circle x
2
+y

2
=r

2
 centered at the origin, then so do seven other points:  

(-x,y), (x,-y), (-x,-y), (y,x), (-y,x), (y,-x), (-y,-x) as shown in  figure 21: 

 

  
 

 Figure 21: Eight Points in the Circumference of the Circle 

 

( x , y ) ( x + xc , y + yc )             First quadratic 

( y , x ) ( y + xc , x + yc ) 
 

( -x , y ) ( -x + xc , y + yc )  Second quadratic 

( -y , x ) ( -y + xc , x + yc )    
 

( -x , -y ) ( -x + xc , -y + yc )   Third quadratic 

( -y , -x ) ( -y + xc , -x + yc ) 
 

( x , -y ) ( x + xc , -y + yc )   Forth quadratic 

( y , -x ) ( y + xc , -x + yc ) 
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To find the symmetric points on a circle centered at (xc,yc) add xc to the first coordinate and yc 

to the second coordinate for each of the eight points. 
 

Example: Let we determine a point (2, 7) of the circle then other points will be (2, -7), (-2, -7), 

(-2, 7), (7, 2), (-7, 2), (-7, -2), (7, -2) 

These seven points are calculated by using the property of reflection. The reflection is 

accomplished by reversing x, y co-ordinates. 

 

5.  A Symmetric in increment method of circles  
By advantage of symmetric points in circle the modified algorithm is: 
 

Input: xc, yc, r.     

Output: circle. 

{ 

dθ= 1/r;   

ct=cos(dθ);  

st=sin(dθ); 

x=0;  y=r; 

while ( y  ≥ x)     

 { 

putpixel(floor(xc+x),floor(yc+y),color); 

putpixel(floor(xc-x),floor(yc +y),color); 

putpixel(floor(xc +x),floor(yc -y),color); 

putpixel(floor(xc -x),floor(yc -y),color); 

putpixel(floor(xc +y),floor(yc +x),color); 

putpixel(floor(xc -y),floor(yc +x),color); 

putpixel(floor(xc +y),floor(yc -x),color); 

putpixel(floor(xc -y),floor(yc -x),color); 

xtemp=x; 

x= x × ct – y × st;     

y= y × ct + xtemp ×st;  

  } 
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6. Circle Generation – Bresenham`s Algorithm 

One of the most efficient and easiest circle algorithms is  Bresenham. To begin, only one octant 

of the circle need be generated. The other parts can be obtained by successive reflections. This 

is illustrated in Fig. 22. If the first octant ( 0 to 45
0
 ) is generated, the second octant can be 

obtained by reflection through the line y=x to yield the first quadrant. The results in the first 

quadrant are reflected through the line x=0 to obtain those in the second quadrant. 

 

 

 

Figure 22: Generation of a Complete Circle from the First Octant 

The combined result in the upper semicircle are reflected through the line y=0 to complete the 

circle. Bresenham`s Algorithm is consider the first quadrant of an origin- centered circle. If the 

algorithm begins at x=0 , y=R, then for clockwise generation of the circle y is a monotonically 

decreasing function of x in the first quadrant. Here the clockwise generation starting at x=0, 

y=R is chosen. The center of the circle is ( 0,0 ). See Figure 23. 

 

Figure 23: First Quadrant of a Circle 

 

 

 Y= -x 
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The circle equation, when the center (xc,yc), and the radius R, is: 

 (x-xc)
2
 + (y-yc)

2
 = R

2     
 

And when the center of this circle is the origin (0, 0), then the equation: 

 

x
2
 + y

2
 = R

2
      Because of xc, yc = 0. 

 

We cannot display a continuous arc on the raster display. Instead, we have to choose the nearest 

pixel position to complete the arc. 
 

 

We have put the pixel at (X, Y) location and now need to decide where to put the next pixel: at 

N (X+1, Y) or at S (X+1, Y-1). Figure 24. (N….out,  S… in). 

 
Figure 24: Choosing the Next Pixel 

 

 

 

This can be decided by the decision parameter d. 
 

 If d <= 0, then N(X+1, Y) is to be chosen as next pixel. √           

 If d > 0, then S(X+1, Y-1) is to be chosen as the next pixel. √               
 

Algorithm 

Input: r,xc,yc 

Output: circle. 

{  

x=0; y=r; d=3-2r; 

while ( x ≤ y)  { 

putpixel(x+xc,y+yc,color);   // plot the other 7 points 

if (d<0) 

d=d+4x+6; 

else    { d=d+4(x-y)+10;   y--;     } 

x++    

}  } 
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7. Scan Converting an Ellipse 
The ellipse is also a symmetric figure like a circle but is four-way symmetry rather than eight-

way. Stretching a circle in one direction produces an ellipse Figure 25. 

  
 Figure 25: 4-way symmetry Ellipse 

There two methods of defining an Ellipse: 

1. Polynomial Method of defining an Ellipse 

2. Trigonometric method of defining an Ellipse 

7.1 Polynomial Method of defining an Ellipse 

An ellipse is defined as the set of points such that the sum of the distances from two fixed 

positions (foci) is the same for all points. If the distances to the two foci from any point P= (x,y) 

on the ellipse are labeled  d1 and d2, then the general equation of an ellipse can be stated as 

 

d1+d2=d3+d4 = constant 

 

 
Figure 26: Polynomial Description of Ellipse 

 

Ellipse equations are greatly simplified if the major and minor axes are oriented to align with 

the coordinate axes. In Fig.27, we show an ellipse in "standard position" with major and minor 

axes oriented parallel to the x and y-axes. Parameter rx for this example labels the semi major 
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axis, and parameter ry labels the semi minor axis. The equation of the ellipse can be written in 

terms of the ellipse center coordinates and parameters rx and ry as: 

 
       

    
 

       

    
 = 1 

 

Where (xc, yc) = ellipse center 

rx =length of major axis (radius x). 

ry =length of minor axis (radius y). 

 

 

 
Figure 27: Ellipse centered at (xc,yc)with semi-major axis rx and semi-minor axis ry 

 

When the polynomial method is used to define an ellipse, the value of x is incremented from –a 

to a. For each step of x, each value of y is found by evaluating the expression: 

 

y = yc± b1 √         
  

                                a1^2 

Algorithm: 

 

1: dt=1/((rx +ry)/2) : x= -rx; 

2: while (x<=rx) 

2.1: y1= +b*( (1- (x^2)) / ( rx^2))^(1/2) 

2.2: y2= - b*( (1- (x^2)) / ( rx^2))^(1/2) 

2.3: plot pixel(xc +x, yc+ y1)  : plot pixel(xc +x, yc+ y1)  // add 2 points 

2.4: x=x+dt 

3: goto 2 

 

Note if a=b then polynomial convert same as circle equation 
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7.2 Trigonometric method of defining an Ellipse 

The polar equation for an ellipse centered at (xc, yc) and rx is the radius on the x-axis and ry is 

the radius on the y-axis. 

 

x=xc +rx *cos (Ө) 

y=yc +ry*sin (Ө) 

 

The angle Ө assumes value from 0 to 2π radius, the values of rx and ry affect the shape of the 

ellipse, if ry>rx the ellipse is longer in the y direction, if rx=ry the equation produces a circle.  

 

Then algorithm is: 

 

1: dt=1/ ((rx +ry)/2) : th=0 : pi=22/7.0 

2: do while (th<=2*Pi) 

2.1: x= xc+rx*cos(th) :  y= yc+ry*sin(th) 

2.2: plot pixel(x,y), 8 

2.3: th=th+dt 

3: goto 2 
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Part Four 
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Transformation 
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4.1 Two Dimensional Geometric Transformations 

Geometric transformations mean changing some graphics into something else by applying rules. 

We can have various types of transformations such as translation, scaling up or down, rotations, 

reflection and shearing. When a transformation takes place on a 2D plane, it is called 2D 

transformation. 
 

Transformations play an important role in computer graphics to reposition the graphics on the 

screen and change their size or orientation. 
 

2D Transformations are: 

1. Homogeneous coordinates 

2. Matrices 

3. Transformations 

4. Geometric Transformations 

 

4.1.1 Homogeneous coordinates 

 

There are three types of co-ordinate systems: 

 

1. Cartesian Co-ordinate System 

 Left Handed Cartesian Co-ordinate System( Clockwise) 

 Right Handed Cartesian Co-ordinate System ( Anti Clockwise) 

2. Polar Co-ordinate System 

3. Homogeneous Co-ordinate System 

 

We can always change from one co-ordinate system to another. 

 

 A point (x, y) can be re-written in homogeneous coordinates as (xh, yh, h) 

 The homogeneous parameter h is a non-zero value such that:  

              X=Xh/h  Y=Yh/h 

 We can then write any point (x, y) as (hx, hy, h) 

 We can conveniently choose h = 1 so that   (x, y) becomes (x, y, 1) 
 

4.1.2  Matrices 

 

• Definition: A matrix is an (n × m) array of scalars, arranged conceptually in n rows and m 

columns, where n and m are positive integers. We use A, B, and C to denote matrices. 

 

• If n = m, we say the matrix is a square matrix. 

• We often refer to a matrix with the notation: 

A = [a(i,j)], where a(i,j) denotes the scalar in the i
th

 row and the j
th
 column 
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• Note that the text uses the typical mathematical notation where the i and j are subscripts. We'll 

use this alternative form as it is easier to type and it is more familiar to computer scientists. 

 

 Scalar-matrix multiplication: 

 A = [ a(i,j)] 

 Matrix-matrix addition: A and B are both n X m 

C = A + B = [a(i,j) + b(i,j)] 

 Matrix-matrix multiplication: A is n × r and B is r × m 

  C = AB = [c(i,j)] where c(i,j) = ∑              
 

   
   

 Each point P(x,y) in the homogenous matrix form is represented as 

 

     x 

     y      3×1  

     1 

 

 Recall matrix multiplication takes place: 

 

     a   b   c         x         a*x+b*y+c*z 

     d   e   f    ×   y    =   d*x+e*y+f*z 

     h   i    j         z          h*x+i*y+j*z 

 

4.1.3 Transformations 

A transformation is a function that maps a point (or vector) into another point (or vector).   

 

A– Geometric Transformations: In Geometric transformation an object itself is moved 

relative to a stationary coordinate system or background. The mathematical statement of this 

view point is described by geometric transformation applied to each point of the object. 
 

B– Coordinate Transformation: The object is held stationary while coordinate system is 

moved relative to the object. These can easily be described in terms of the opposite operation 

performed by Geometric transformation. 

Types of Transformations: 

1. Translation 

2. Scaling 

3. Rotating 

4. Reflection 

5. Shearing 

https://www.javatpoint.com/computer-graphics-translation
https://www.javatpoint.com/computer-graphics-scaling
https://www.javatpoint.com/computer-graphics-rotation
https://www.javatpoint.com/computer-graphics-reflection
https://www.javatpoint.com/computer-graphics-shearing
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1.  Translation  

A translation moves an object to a different position on the screen. A point (x ,y) is translated to 

a new position (x’, y’) by move it H units in the horizontal direction and V units in the vertical 

direction. The translation pair (H,V) is called as shift vector. Here the object is positioned from 

one coordinate location to another. Figure 15. 

 

  

 

Figure 15: Horizontal and vertical displacement 

Mathematically this can be represented as:  

         X’ = X + H 

         Y’ = Y + V 

The H and V represent the horizontal and vertical displacement or distance that the point has 

moved. If H is positive, the point moves to the right, if H is negative the point moves to the left, 

similarly, a point V moves the point up, a negative V moves it down. To move object we must 

translate every point describing the object. 
 

To translate an object in an image we must translate every point defining the object. All point, 

are displaced the same distance and the object is draw using these transformed points. 
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Note1: using coordinate system the translating factor are: 

If H>0 then point moves to the right. 

If H<0 then point moves to the left. 

If V>0 then point moves to the up. 

If V<0 then point moves to the down. 

 

Note2: using coordinate system in screen then translating factor are: 

If H>0 then point moves to the right. 

If H <0 then point moves to the left. 

If V >0 then point moves to the down. 

If V <0 then point moves to the up. 
 
 

Example 

Consider a triangle defined by it three vertices ( 40 , 0 ), ( 80 , 0 ), ( 60 , 100 ) be translated 120 

units to the right and 20 units up. 
 

Solution: 

 
 

H = 120 , V = 20 . The new vertices are:    ( 160 , 20 ) , ( 200 , 20 ) , ( 180 , 120 ) 
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Matrix for Translation: 

     1     0    1      or    1   0   tx 

     0     1    0             0   1   ty 

     tx   ty    1             0   0   1 

 

2. Scaling 
To change the size of an object, scaling transformation is used. We can change the size of an 

object, or the entire image, by multiplying the distance between points by an enlargement or 

reduction factor. This factor is called the “scaling factor “, and the operation that changes the 

size is called scaling. If the scaling is greater than 1, the object is enlarge, if the factor is less 

than 1, the object is made smaller, a factor of 1 has no effect on the object. Whenever scaling is 

performed, there is one point that remains at the same location. This is called the fixed point of 

the scaling transformation. 
  

x` = x * Sx 

y` = y * Sy 
 

Example  

Scale the triangle ( 4 , 4 ) , ( 7 , 8 ) , ( 10 , 5 ) by Sx = 2 and Sy = 2, about the origin point. 
 

Solution: 

The new points are:      ( 8 , 8 ) , ( 14 , 16 ) , ( 20 , 10 ) 

 

 

Enlargement: If T1= , if (x1 y1) is original position and T1is translation vector then 

(x2 y2) are coordinated after scaling 

 
The image will be enlarged two times 
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Reduction: If T1= . If (x1 y1) is original position and T1 is translation vector, then 

(x2 y2) are coordinates after scaling 

 
 

 

Matrix for Scaling: 

          sx   0    0 

 S=     0    sy   0 

           0    0    1 

 

2. Rotation 
It is a process of changing the angle of the object. Rotation can be clockwise or anticlockwise. 

For rotation, we have to specify the angle of rotation and rotation point. Rotation point is also 

called a pivot point. It is print about which object is rotated. In rotation, we rotate the object at 

particular angle θ (theta) from its origin. After the object has been rotated, it is still the same 

distance away from the pivot point; however its orientation has been changed. 

 

Types of Rotation: 

 
1. Clockwise 

2. Counterclockwise (Anticlockwise) 

 

The positive value of the pivot point (rotation angle) rotates an object in a counter-clockwise 

(anti-clockwise) direction. Figure 16.a. 

 

The negative value of the pivot point (rotation angle) rotates an object in a clockwise direction. 

Figure 16.b. 

 

When the object is rotated, then every point of the object is rotated by the same angle.  
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-a-                                                                           -b- 

 

Figure 16: Rotation (a- clockwise Q original position, Q’ after rotation, θ angle rotation 

                                                       b- counterclockwise P original position, P’ after rotation, θ angle rotation) 

 

Any point ( x , y ) can be represented by its radial distance, r, from the origin and its angle, Ø , 

of the x – axis as show in figure 16. 

 
Figure 16: Rotation about origin 

 
 

Using standard trigonometric the original coordinate of point P(X, Y) can be represented as: 
 

x = r * cos (Ø) 

y = r * sin (Ø) ………….. (1)    where r is the length 

If ( x , y ) is rotated an angle Ø in the counterclockwise direction. The transformed point (x`,y`) 

is represented as : 

 

x = r * cos (Ø + Ø )  
y = r * sin (Ø + Ø ) ………….. (2) 

  

 sin (A + B) = sin A . cos B + sin B . cos A 

cos (A + B) = cos A . cos B – sin A . sin B 
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Using the laws of sines and cosines from trigonometry, the equation (2) become: 
 

x` = r * cos (Ø ) * cos (Ø ) – r * sin (Ø ) * sin (Ø ) 
y` = r * sin (Ø ) * cos (Ø ) + r * cos (Ø ) * sin (Ø)  ………… (3) 
 

From the definition of x and y, the equation (3) reduces to: 
 

x` = x * cos (Ø ) – y * sin (Ø ) 
y` = y * cos (Ø ) + x * sin (Ø )  ……………….. (4)     عكس عقارب الساعة 
 

So to rotate a point ( x , y ) through a clockwise angle Ø about the origin of the coordinate 

system we write:- 
 

x` = x cos (Ø ) + y sin (Ø ) 

y` = - x sin (Ø ) + y cos (Ø )     …….. (5)                  باتجاه عقارب الساعة 

Example 

The triangle ( 10 , 0 ) , ( 30 , 0 ) , ( 50 , 80 ) rotate 45
o
 clockwise about the origin. 

 
 

Solution: 

x` = x cos (Ø ) + y sin (Ø ) 

y` = - x sin (Ø ) + y cos (Ø ) 

( 7.07 , - 7.07 ) , ( 21.21 , - 21.21 ) , ( 91.93 , 21.12 ) 

 

Rotate about the origin 

Rotation about an arbitrary point (not origin): If we want to rotate an object or point about 

an arbitrary point (pivot point), first of all, we translate the point about which we want to rotate 

to the origin. Then rotate point or object about the origin, and at the end, we again translate it to 

the original place (i.e. translate, rotate, translate) figure 17.  

 

Figure 17: Rotation about an arbitrary (pivot) point 

Pivot Point Origin  Rotate 
 Back to the pivot point 
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To rotate an object an angle (Ø) about a pivot point ( xp , yp ) other than the origin, we 

perform the following three steps: 
 

 

Step 1: Translate 

Translate the pivot point ( xp , yp ) to the origin. Every point ( x , y ) defining the object is 

translated to a new point ( x` , y` ) where: 
 

x` = x - xp 

y` = y – yp 
 

 

Step 2: Rotate 

Use these translated points ( x`, y`), Ø degree about the origin to obtain the new point ( x``, y``) 

where: 
 

 

x`` = x` * cos (Ø ) – y ` * sin (Ø ) 

y`` = y` * cos (Ø ) + x ` * sin (Ø ) 
 

 

 

By substituting for x` and y`: 
 

x`` = ( x – xp ) * cos (Ø ) – ( y – yp ) * sin(Ø ) 

y`` = ( y – yp ) * cos (Ø ) + ( x – xp ) * sin(Ø ) 
 

 

Step 3: Translate 

Translate the center of rotation back to the pivot point ( xp , yp ). 
 

x` = r * cos (Ø ) * cos (Ø ) – r * sin (Ø ) * sin (Ø ) 

y` = r * sin (Ø ) * cos (Ø ) + r * cos (Ø ) * sin (Ø)                    

x` = x * cos (Ø ) – y * sin (Ø ) 

y` = y * cos (Ø ) + x * sin (Ø )                     

x``` = x`` + xp 

y``` = y`` + yp 
 

 

By substituting for x`` and y``: 

 
 

x``` = ( x – xp ) * cos (Ø ) – ( y – yp ) * sin(Ø ) + xp 

y``` = ( y – yp ) * cos (Ø ) + ( x – xp ) * sin(Ø ) + yp 
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4. Reflection 
 

Reflection is the mirror image of original object. In other words, we can say that it is a rotation 

operation with 180˚. In reflection transformation, the size of the object does not change. Table 

(1) shows types of reflection. 
 

 

 
 

Coordinate Rules for Reflection 

If (a, b) is reflected on the x-axis, its image is the point (a, -b) 

If (a, b) is reflected on the y-axis, its image is the point (-a, b) 

If (a, b) is reflected on the line y = x, its image is the point (b, a) 

If (a, b) is reflected on the line y = -x, its image is the point (-b, -a) 

If (a, b) is reflected about the origin point, its image is the point (-a, -b) 

 

 

 

Reflection Reflection Rule In Words What it looks like on the graph 

Over the x-axis (x,y)(x,-y) 
Negate the y 

coordinates 

Image is directly above or below the 

original 

Over the y-axis (x,y)(-x,y) 
Negate the x 

coordinates 
Image is left or right of the original 

Over y=x (x,y)(y,x) 
Swap the x and y 

coordinates 

y=x passes through the plane at a 45 

degree angle. Image is above or below 

this line from the original 

Origin (x,y)(-x,-y) 
Negate both the x and 

y coordinates 

Image is rotated 180 degrees 

 

y = -x  (x,y)(-y,-x) 

reverse the order of the 

coordinates and reverse 

the signs 

(-2, 6) would become (-6,2) 
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Reflection in the x -axis: The rule for a reflection over the x -axis is (x,y)→(x,−y) . 
  

 

 

Reflection in the y-axis: The rule for a reflection over the y-axis is (x,y)→(−x,y) . 
  

 

 

Reflection in the line y=x: The rule for a reflection in the line y=x is (x,y)→(y,x) 
  

 

 

Reflection in the line y= −x: The rule for a reflection in the origin is (x,y)→(−y,−x). 
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Example Find the image of the point (3, 2) that has undergone a reflection across 

a) the x-axis,  

b) the y-axis,  

c) the line y = x, and  

d) the line y = −x.  
 

Write the notation to describe the reflection.  
 

 

 

Solution: 

a) Reflection across the x-axis: rx−axis(3,2) → (3,−2) 

b) Reflection across the y-axis: ry−axis(3,2) → (-3,8) 

c) Reflection across the line y = x: ry=x(3,2) → (2,3) 

d) Reflection across the line y = −x: ry= −x(3,2) → (−2,-3) 
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Table 1: Types of Reflection 

 

Reflection Original Object Reflected Object Example 

 

About the 

Y axis 

 

Xnew = -X 

Ynew = Y 

 

   
 

 
 
 

 

 

About the 

X axis 

 

Xnew = X 

Ynew = -Y 

 

 

 

  
 

About the 

origin 

 

Xnew = -X 

Ynew = -Y 

 

   

Y=X 

 
 

Xnew = Y 

Ynew = X 
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Y= -X 

 

 

Xnew = -Y 

Ynew = -X 

 

  

 

 

 

 

5. Shear 

A transformation that slants the shape of an object is called the shear transformation. There are two 

shear transformations X-Shear and Y-Shear. One shift X coordinate values and other shifts Y 

coordinate values. In both the cases, only one coordinate changes its coordinates and other preserves its 

values. Shearing is also termed as Skewing. The shear can be in one direction or in two directions. 
 

 

Shearing in the X-direction (X-Shear) 
The X-Shear preserves the Y coordinate and changes are made to X coordinates, which causes the 

vertical lines to tilt right or left as shown in figure 18. 

 
Figure 18: X-Shear Transformation 
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The transformation homogeneous matrix for X-Shear can be represented as: 

                 1     0    0 

Xsh =       Shx   1    0 

                0      0    1 

 

X` = X+ Shx * Y 

Y`=Y 
 

Shearing in the Y-direction (Y-Shear) 

The Y-Shear preserves the X coordinates and changes the Y coordinates which causes the 

horizontal lines to transform into lines which slopes up or down as shown in the figure 19. 

 

Figure 19: Y-Shear Transformation 

The homogeneous matrix Y-Shear can be represented as: 

               1   Shy   0    

Ysh =       0    1     0     

               0     0    1 
 

Y` = Y+ Shy * X 

X`=X 
 
 

 

Shearing in X-Y directions: Here layers will be slide in both x as well as y direction. The 

sliding will be in horizontal as well as vertical direction. The shape of the object will be 

distorted figure 20. The homogeneous matrix of shear in both directions is given by: 

 

               1   Shy   0    

              Shx  1     0     

               0     0    1 
 

 
Figure 20: X-Y Shear Transformation 
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Example : 

Shear the object (1,1), (3,1),(1,3), (3,3) with  
 

a: shx = 2 

b: shy =2 
 

 

 

Solution 

 

a: shx 

   1   1   1           1   0   0          3   1   1 

   3   1   1      ×   2   1   0    =    5   1  1 

   1   3   1           0   0   1          7   3   1 

   3   3   1                                 9   3   1 

 

 

 

 

b: shy 

   1   1   1           1   2   0          1   3   1 

   3   1   1      ×   0   1   0    =    3   7  1 

   1   3   1           0   0   1          1   5   1 

   3   3   1                                 3   9   1 
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4.2 Matrix Representation of Transformations 

Translation of point by the change of coordinate cannot be combined with other transformation 

by using simple matrix application. Such a combination is essential if we wish to rotate an 

image about a point other than origin by translation, rotation again translation. 

To combine these three transformations into a single transformation, homogeneous coordinates 

are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are 

represented by triple-coordinates. Here we perform translations, rotations, scaling to fit the 

picture into proper position. 

For two-dimensional geometric transformation, we can choose homogeneous parameter h to 

any non-zero value. For our convenience take it as one. Each two-dimensional position is then 

represented with homogeneous coordinates (x, y, 1). 

 

4.2.1 Homogeneous Coordinates 

The matrix representation of the transformation:  Translation, Scaling, Rotation. 

 

1. Translation 

 

Consider a point P(x1, y1) to be translated to another point Q(x2, y2). If we know the point value 

(x2, y2), we can directly shift to Q by displaying the pixel (x2, y2). Suppose we only know that 

we want to shift by a distance of Tx along x axis and Ty along Y axis. Then the coordinates can 

be derived by x2 =x1 +Tx and Y2 = y1 + Ty. 
 

Suppose we want to shift a triangle with coordinates at A(20,10), B(30,100) and C(40,70). The 

shifting to be done by 20 units along x axis and 10 units along y axis. Then the new triangle will 

be at A1 (20+20, 10+10) B1 (30+20, 10+10) C1 (40+20, 70+10). 
 

                                                                    1    0    0 

In the matrix form [x2 y2 1] = [x1 y1 1]  ×     0    1    0        

                                                                    Tx   Ty  1 
 

                                     1   0   0 

[x` y` 1] = [x  y  1] ×    0   1    0        

                                     H  V   1 
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2. Scaling 

                                     Sx  0   0 

[x` y` 1] = [x  y  1] ×    0   Sy   0        

                                     0   0    1 

 

3. Rotation  

(a) Counterclockwise direction   

                                      cos(x)      sin(x)   0 

[x` y` 1] = [x  y  1] ×    - sin(x)     cos(x)   0        

                                        0                 0     1 
 

 

(b) Clockwise direction 

                                     cos(x)      -sin(x)    0 

[x` y` 1] = [x  y  1] ×    sin(x)       cos(x)     0        

                                       0                 0       1 
 

4. Shearing 

                                            1      0   0 

xsh= [x` y` 1] = [x  y  1] ×   shx    1   0        

                                            0      0   1 

 

                                             1   shy   0 

ysh= [x` y` 1] = [x  y  1] ×     0    1     0        

                                             0    0     1 

  

5. Reflection 

A- Reflection about X – axis: 

x`=x 

y`= -y 

                                               1   0    0 

Refx= [x` y` 1] = [x  y  1] ×    0  -1    0        

                                               0    0   1 
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B- Reflection about Y – axis: 

x`= -x 

y`= y 

                                              -1   0   0 

Refy= [x` y` 1] = [x  y  1] ×    0    1   0        

                                               0    0   1 
 

C- Reflection about the origin (0, 0): 
 

x= -x 

y= -y 

                                                   -1   0   0 

Reforgin= [x` y` 1] = [x  y  1] ×    0  -1     0        

                                                   0   0    1 
 

D- Reflection about the line y = x : 

x= y 

y= x 

                                                 0    1   0 

Refy=x= [x` y` 1] = [x  y  1] ×   1    0    0        

                                                 0    0   1 
 

E- Reflection about the line y = -x : 

x= -y 

y= -x 

                                                   0    -1   0 

Refy= -x= [x` y` 1] = [x  y  1] ×   -1    0    0        

                                                   0     0   1 

 

Example 

Consider a triangle defined by it three vertices (40,100), (20 , 0), (60, 0) be translated 20 units 

to the right, using matrix representation. 
 

Solution: 

    40   100    1               1     0   0            60   100   1 

    20      0     1      ×       0     1   0       =    40      0    1 

    60      0     1               20   0   1            80      0    1 
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Example   

Rotate the triangle ( 7 , 8 ) , ( 4 , 4 ) , ( 10 , 5 ) 90
o
 counterclockwise about the point ( 7 , 8 ), 

using matrix representation. 
 
 

Solution: 

 

1) Translate:- 
 

       7     8     1                  1    0    0               0     0     1 

     4     4     1       ×         0    1    0      =      -3    -4    1 

    10    5     1                 -7   -8    1             3    -3    1 

 
 

2) Rotate: - 
 

             0     0     1                  cos(90)   sin(90)     0                       0     0     1 

  -3    -4    1         ×      -sin(90)   cos(90)    0          =           4    -3    1 

   3    -3    1                        0            0       1                        3     3    1 

 

 

3) Translate: - 
 

   0     0    1                   1   0   0                7     8     1 

    4    -3    1       ×          0    1   0      =      11    5     1 

     3     3    1                   7   8   1              10   11    1 
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Example   

Magnify the triangle ( 0 , 0 ) , ( 8 , 10 ) , ( 12 , 4 ), 4 times its size, using matrix representation. 
 

Solution: 
    0      0     1                  4    0   0                0     0     1 

      8     10    1       ×         0    4   0      =      32    40    1 

 12     4    1                  0    0   1              48    16    1 

 
 

Example  
 

Reflect the shape (20, 70), (40, 50), (60, 70), (40, 90), about: 

1- X – axis  2- Y- axis 3- origin (0,0)  4- y = x  5- y = -x , by used matrix representation, 

and draw the result. 
 

Solution 
 

1- X – axis  

x`= x 

y`= -y 
 

  20   70   1                1   0   0           20   -70   1 
  40   50   1        ×      0   -1   0     =  40   -50   1 

  60   70   1                0    0   1         60   -70   1 

  40   90   1                                      40   -90   1 

2- Y- axis: 

x`= -x 

y`= y 

 

  20   70   1                -1  0   0           -20   70   1 
  40   50   1        ×       0   1   0     =    -40   50    1 

  60   70   1                 0   0   1           -60   70    1 

  40   90   1                                        -40   90   1 
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3- Origin (0,0)  

x= -x 

y= -y 

 

  20   70   1               -1  0   0            -20   -70   1 
  40   50   1        ×      0  -1  0     =      -40    -50   1 

  60   70   1                0   0   1            -60     -70  1 

  40   90   1                                        -40    -90   1 

4- y = x  

x= y 

y= x 

 

  20   70   1                1   1   0            70   20   1 
  40   50   1        ×       1   0   0     =    50   40   1 

  60   70   1                 0   0   1           70   60   1 

  40   90   1                                        90   40  1 
 

5- y = -x  

x = -y 

y = -x 

 

  20   70   1                1   -1  0           -70   -20   1 
  40   50   1        ×     -1    0   0     =    -50   -40    1 

  60   70   1                0    0   1           -70   -60    1 

  40   90   1                                        -90   -40    1 
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Part Five 
 

Mapping (Normalized 

Device Coordinates) 

(Window, Viewport) 

& 

 Clipping  
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5.1 Two-Dimensional Viewing and Clipping  
 

 It is defined as a process for displaying views of a two-dimensional picture on an output 

device: 

– Specify which parts of the object to display (clipping window, or world window, or viewing 

window) Figure 28. Where:  

 

 
 

Figure 28: Clipping window, world window and viewing window 

 

– World Co – Ordinate System is a right handed Cartesian coordinate system in which picture 

is actually defined. 

 

– Physical Device Co – Ordinate System is a coordinate system that correspond to output 

device or work stations where image to be displayed.  

 

– Normalized Co – Ordinate System It is a right handed coordinate system in which display 

area of virtual display device correspond to the unit square (1×1).  

 

– Window or Clipping window is the selected section of a scene that is displayed on a display 

window. It is a finite region from World Coordinate System. 

 

– View port is the window where the object is viewed on the output device. It is a finite region 

from Device Coordinate System. 

 

The primary use of clipping in computer graphics is to remove objects, lines, or line segments 

that are outside the viewing pane. The viewing transformation is insensitive to the position of 

points relative to the viewing volume – especially those points behind the viewer – and it is 

necessary to remove these points before generating the view. 
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The method for selecting and enlarging portions of a drawing enclosed in a rectangular region is 

called Windowing. The rectangular region is called a window. The technique for not showing 

that part of the drawing which one is not interested in is called clipping. Figure 29. 

 

  

 
 

Figure 29: A Window and Viewing mapping 

 

A window is specified by four world coordinate: XWmin, XWmax, YWmin, and YWmax. 

Similarly, a viewport is described by four normalized device coordinates: XVmin, XVmax, 

YVmin, and YVmax. Figure 29. 

 

The objective of window-to-viewport mapping is to convert the world coordinates (WX, WY) 

of an arbitrary point to its corresponding normalized device coordinates (VX, VY). In order to 

maintain the same relative placement of the point in the viewport as in the window, we require: 
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Solving these impressions for the viewport position (xv, yv), we have: 

xv=xvmin+(xw-xwmin)*sx 

yv=yvmin+(yw-ywmin)*sy ...........equation 2 

Where scaling factors are: 

 
 

Note: the coordinate of window is world coordinate but the view port is the coordinate x = 0 to 

1 and y = 0 to 1. 

Equation (1) and Equation (2) can also be derived with a set of transformation that converts the 

window or world coordinate area into the viewport or screen coordinate area. This 

conversation is performed with the following sequence of transformations: 

1. Perform a scaling transformation using a fixed point position (xwmin,ywmin) that scales 

the window area to the size of the viewport. 

2. Translate the scaled window area to the position of the viewport. Relative proportions of 

objects are maintained if the scaling factors are the same (sx=sy). 

1- Viewing Transformation: Mapping from object space to image space, 
 

1. Change the window size to become the size of the view port (Scaling). 

2. Position the window at the desired location on the screen (Translate) by moving the Lower-

left corner of the window to the view port Lower-left corner location. To do this we need 2 

steps: 
 

Step 1: 

Move the corner to the origin (to perform the necessary scaling without disturbing the corner 

the corner's position). 
 

 

Step 2: 

Move it to the view port corner location. 
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Matrix Representation of the three steps of Transformation: 

 

 
 

Step1:Translate window to origin 1 

          Tx= -Xwmin    Ty= -Ywmin 

Step2:Scaling of the window to match its size to the viewport 

          Sx=(Xvmax-Xvmin) / (Xwmax-Xwmin) 

          Sy=(Yvmax-Yvmin) / (Ywmax-Ywmin) 

Step3:Again translate viewport to its correct position on screen. 

          Tx=Xvmin 

          Ty=Yvmin 

Above three steps can be represented in matrix form: 

          VT=T * S * T1 

T = Translate window to the origin 

S=Scaling of the window to viewport size 

T1=Translating viewport on screen. 

 

Viewing Transformation= T * S * T1 
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Example 

A window has left and right boundaries of 3 and 5 and lower and upper boundaries of 0 and 4. 

The view port is the upper-right quadrant of the screen with boundaries at 0.5 and 1.0 for both X 

and Y direction, find the viewing transformation? 

 

1- Translate   
Tx= -Xwmin    Ty= -Ywmin    

  
The first translation matrix would be:  

   1    0   0 

   0    1   0      To origin 

   -3   0   1 
 

2- Scaling  

Sx=(Xvmax-Xvmin) / (Xwmax-Xwmin) 

Sy=(Yvmax-Yvmin) / (Ywmax-Ywmin) 

The length of the window is: 

 

5 – 3 = 2   in the X direction 

4 – 0 = 4  in the Y direction 
 

The length of the view port is  1.0 – 0.5 = 0.5 in the X direction 

 

The X scale factor is  Sx= 0.5/2 = 0.25 

In the Y direction is  Sy= 0.5/4 = 0.125 

 

 

 

The scaling transformation matrix is: 

 
 

   0.25    0       0 

    0     0.125   0        

    0       0        1 
 

3- Translate   
 

Tx=Xvmin 

Ty=Yvmin 
 

 

Finally to position the view port requires a translation: 

(3,0) 

(5,4) 

 window 

min 
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   1       0      0 

   0       1      0        

  0.5   0. 5    1 
 

The viewing transformation is then:  T * S * T1 

   1    0   0       0.25      0         0   1      0     0  0.25       0       0 

   0    1   0      *    0       0.125    0     *     0      1     0    =        0      0.125   0 

   -3   0   1            0         0         1  0.5   0.5   1            -0.25     0.5    1  
 
 

 In general the viewing transformation is: 
 

   1         0          0     
         

         
           0                  0               1        0       0 

   0        1       01          0            
         

         
         0               0        1        0        =        

   -WXL    -WYL       1              0                0                 1             VXL      VYL     1     

     

    
         

         
                               0    0 

  0                        
         

         
                         0      

                             VXL-WXL
         

         
           VYL-WYL

         

         
   1      

 

 

V: View port 

W: Window 

X: Position of a vertical boundary 

Y: Horizontal boundary 

H: High boundary 

L: Low boundary      

 

2 – Clipping 

Is a process which divided each element of the picture into its visible and invisible portions. 

Visible portion is selected. An invisible portion is discarded. 
 

- If we imagine a box about a portion of the object so we could display what is enclosed in the 

box such a box called a Window. 
 

- If we do not wish to use the entire screen for display, we can imagine a box on the screen and 

have the image confined to that box such a box in the screen space is called a view port. 
 

- When the window is hanged a different part of the object at the same position is displayed. 
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- If we change the view port, we see the same part of the object drawn at a different place on the 

display. 

 

The process of clipping determines which elements of the picture lie inside the window and so 

are visible. 
 

 

2-1 Rectangular Clipping Windows 

The clipping window assumes to be rectangles whose sides are aligned with the coordinate area. 

The X extent is measured from X min to X max and the Y extent is measured from Y min to Y 

max. 

 
There are three types of clipping: 
 

1 – Point  

2 – Line 

3 – Polygon 
 

 

a) Point Clipping 

 

Point Clipping is used to determining, whether the point (x,y) is inside the window or not. For 

this following conditions are checked: 

1. x ≤ xmax 

2. x ≥ xmin 

3. y ≤ ymax 

4. y ≥ ymin 

 
Figure 30: Point Clipping 
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The (x, y) is coordinate of the point. If anyone from the above inequalities is false, then the 

point will fall outside the window and will not be considered to be visible. Figure 30. 
 

Algorithm of Point Clipping: 

 

Step 1: First, we set the value of xmin and xmax coordinates for the window. 

Step 2: Now, set the coordinates of a given point (P, Q). 

Step 3: Now check the above mention condition. 

Step 4: If 

                 Point coordinates lie between the (xmin, xmax) and (ymin, ymax) 

            Then 

                  {Display the point in the view pane}     

            Else 

                  {Remove the point} 

Step 5: Stop. 
 

 

b) Line Clipping 

Lines are of three types: 

 

1. Visible: A line or lines entirely inside the window is considered visible 

2. Invisible: A line entirely outside the window is considered invisible 

3. Clipped: A line partially inside the window and partially outside is clipped. For clipping 

point of intersection of a line with the window is determined. 
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The concept of line clipping is same as point clipping. In line clipping, we will cut the portion 

of line which is outside of window and keep only the portion that is inside the window see 

figure 31. 
  

 
Figure 31: Line Clipping 

 
 

How to decide which of the lines, or more precisely which part of every line is to be displayed. 

Since we know the coordinates of the screen, 
 



84 
  

i) Any line whose end points lie within the screen coordinate limits will have to display 

fully (because we cannot have a straight line whose end points are within the screen 

and any other middle point in outside). 

ii) Any line whose end points lie totally outside the screen coordinates will have to 

examine to see if any intermediate point is inside the screen boundary. 

iii) Any line whose one end point lies inside the boundary will have to be identified. 

 

In case of (ii) and (iii), we should decide up to what point, the line segment can be displayed. 

Simply finding the intersection of the line with the screen boundary can do this. 
 

We will use 4-bits to divide the entire region (Cohen Sutherland). These 4 bits represent the 

Top, Bottom, Right, and Left of the region as shown in the figure 32. Here, the TOP and LEFT 

bit is set to 1 because it is the TOP-LEFT corner. i.e. TBRL code 1001 (T=1, not Bottom so 

B=0, not Right so R=0, L=1,). 

 

 

 
 

Figure 32: 4-bits Code 

 

First bit on        if x < xl   to the left of window. 

Second bit on    if x > xr   to the right of window. 

Third bit on      if y < yb   to the below of window. 

Fourth bit on    if y > yt    to the top of window. 

The conditions can be checked by simply comparing the screen coordinate values with the 

coordinates of the endpoints of the line. 
 

If for a line, both end points have the bit pattern of 0000, the line can be displayed as it is 

(trivially). 
 

Otherwise, the pattern of 1’s will indicate as to with respect to which particular edge the 

intersection of the line is to be verified. 
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For example if one of the points of a straight line shows 1000, then it’s interring section with 

regard to the top edge needs to be computed (since the point is above the top edge). If for the 

same line, the other point returns 0010, then since a segment of the line a beyond the right edge, 

the intersection with the right edge is to be computed. 
 

Line Segment Clipping 

Line clipping process is two phases: 
 

1: Identify those lines which intersect the window and so need to be clipped. 

2: Perform the clipping. 

All line segments fall into one of the following clipping categories figure 33. 

 

Figure 33: Clipping categories 

1 – Visible: 

Both endpoints of the line segment lie within the window (Line AB). 

When the OR operation between two endpoint codes is FALSE (0000), the line is inside the 

clipping window, and we save it.  
 

 

2 – Not visible: 

The line segment definitely lies outside the window (Line CD and EF). This will occur if the 

line segment from (X1, Y1) to (X2, Y2) satisfies any one of the following four in qualities 
 

X1, X2 > Xmax      Y1, Y2 > Ymax     X1, X2 < Xmin     Y1, Y2 < Ymin  

Doing Bitwise AND between the two outcodes of the line segment endpoints, if the result is 

NOT 0000, then the line endpoints share the same region and the line segment does not cross 

the clipping window so it is rejected. 
 

 

3 – Clipping candidate: 

The line is in neither category 1 nor 2 (Line GH, IJ, and KL). If endpoint is above the 

window(y>Ymax) or endpoint is below the window(y<Ymin) the Y clipped is equaled 

boundaries of window and X clipped is equaled X=(y-y1)/m + x1. 

Note: if m=0 then X=X1 suppose "down or X2 suppose up" if endpoint is right of 

window(x>Xmax) or endpoint is left of window(x<Xmin) the X clipped is equaled boundaries 

of window and Y clipped is equaled y=(X-x1) m + y1. 
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Line clipping is performed by using the line clipping algorithm. The line clipping algorithms 

are: 

1. Cohen Sutherland Line Clipping Algorithm 

2. Midpoint Subdivision Line Clipping Algorithm 

3. Liang-Barsky Line Clipping Algorithm 

 

A- Cohen Sutherland Line Clipping Algorithm  
 

1. Read 2 end points of line as p1(x1,y1) and p2(x2,y2) 
 

2. Read 2 corner points of the clipping window (left-top and right-bottom) as (wx1,wy1) and 

(wx2,wy2) 
 

3. Assign the region codes for 2 endpoints p1 and p2 using following steps:- 

initialize code with 0000 

 
 

Set bit 1 if x<wx1 

Set bit 2 if x>wx2 

Set bit 3 if y<wy2 

Set bit 4 if y>wy1 
 

4. Check for visibility of line 

a. If region codes for both endpoints are zero then line is completely visible. Draw the line 

go to step 9. 

b. If region codes for endpoints are not zero and logical ANDing of them is also nonzero 

then line is invisible. Discard the line and move to step 9. 

c. If it does not satisfy 4.a and 4.b then line is partially visible. 

 

5. Determine the intersecting edge of clipping window as follows:- 

a. If region codes for both endpoints are nonzero find intersection points p1’ and p2’ with 

boundary edges. 

b. If region codes for any one end point is non zero then find intersection point p1’ or p2’. 

 

6. Divide the line segments considering intersection points. 

 

7. Reject line segment if any end point of line appears outside of any boundary. 

 

8. Draw the clipped line segment. 

 

9. Stop. 
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Example: Suppose window (-30,40), (40, -40) check with clipping line Line1(70,0),(0,70) & 

line2 (-50,10),(0,-30) & line3 (50,70),(60,-70) 

 

Solution:- Xmin= -30, Xmax=40, Ymin= -40, Ymax=40 

 

Line1(70,0) [0010] because X>Xmax 

Line1 (0,70) [0001] because Y>Ymax 

 

Finally [0010] AND [0001]  [0000] 'need Clipping 

 

Line2(-50,10) [1000] because X<Xmin 

Line2 (0,-30) [0000] point inside 

 

Finally [1000] AND [0000]  [0000] 'need Clipping 
 

Line3(50,70) [0011] because X>Xmax & Y>Ymax 

Line3 (50,-70) [0110] because X>Xmax & Y<Ymin 

 

Finally [0011] AND [0110]  [0010] it line is outside {not visible} 

 

 

 
 

 

Note: If result AND (bitwise)=0 then need clipping {case.1 , case. 3} 

otherwise is fully external of window Coordinate {not visible case. 2} 
 

 

NOTES 

 Line VisibleAnd = 0 ,OR = 0 

 Line InvisibleAnd < > 0 ,OR < > 0 

 Otherwise Line needs Clipping. 

 Point line Clipping must be flag is 0000 
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Simple visibility algorithm 
 

Check for totally visible lines. 

If ((xb < xL ) OR (xb > xR)) then 1. 

If ((xe < xL ) OR (xe > xR)) then 1. 

If ((yb < yB) OR (yb > yT )) then 1. 

If ((ye < yB) OR (ye > yT )) then 1. 

Draw line 

Go to 3 

1 - Check for totally invisible lines 

if ((xb < xL) AND (xe < xL)) then 2 

if ((xb > xL) AND (xe > xL)) then 2 

if ((yb < yL) AND (ye < yB)) then 2 

if ((yb > yT) AND (ye > yT)) then 2 
 

 

The line is partially visibly or diagonally crosses the corner; determine the intersections go 

to 3 
 

2 line is invisible 

3 next line 

Now, let us study how this clipping algorithm works. For the sake of simplicity we will tackle 

all the cases with the help of example lines l1 to l5 shown in Figure 34. Each line segment 

represents a case. 

 

Figure 34: 
Various cases of Cohen Sutherland Line Clippings 
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Note, that in Figure 34, line l
1 

is completely visible, l
2 

and l
3 

are completely invisible; l
4
and l

5 

are partially visible.   

 

Case 1: l
1 
→ Completely visible, (both points lie inside the window)  

 

Case 2: l
2 
and l

3 
→ Invisible , rejection 

  

Case 3: l
4 
and l

5
→ partially visible (partially inside the window)  

 

Now, let us examine these three cases with the help of this algorithm:  

 

Case 1: (Trivial acceptance case) if the TBLR bit codes of the end points P,Q of a given line is 

0000 then line is completely visible. Here this is the case as the end points a and b of line l
1 

are: 

a (0000), b (0000). If this acceptance test is failed then, the line segment PQ is passed onto Case 

2. 

  

Case 2: (Rejection Case) if the logical intersection (AND) of the bit codes of the end points P, 

Q of the line segment is ≠ 0000 then line segment is not visible or is rejected. 

Note that, in Figure 34, line 2 is completely on the top of the window but line 3 is neither on 

top nor at the in bottom plus, either on the LHS nor on the RHS of the window. We use the 

standard formula of logical ANDing to test the non visibility of the line segment.  

So, to test the visibility of line 2 and 3 we need to calculate the logical intersection of end points 

for line 2 and line 3.  

 

line l2: bit code of end points are 1010 and 1000  

logical intersection of end points = (1010) ^ (1000) = 1000  

as logical intersection ≠ 0000. So line 2 will be invisible. 

  

line l3: end points have bit codes 0010 and 0101 now logical intersection = 0000, i.e., 0010 ^ 

0101 = 0000 from the Figure 34, the line is invisible. Similarly in line 4 one end point is on top 

and the other on the bottom so, logical intersection is 0000 but then it is partially visible, same 

is true with line 5. These are special cases and we will discuss them in case 3. 
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Figure 35: Cohen Sutherland line clipping 

Case 3: Suppose for the line segment PQ, both the trivial acceptance and rejection tests failed 

(i.e., Case 1 and Case 2 conditions do not hold, this is the case for l3, l4 and l5 line segments) 

shown in Figure35. For such non-trivial Cases the algorithm is processed, as follows. 

  

Since, both the bitcodes for the end points P, Q of the line segment cannot be equal to 0000. Let 

us assume that the starting point of the line segment is P whose bit code is not equal to 0000. 

For example, for the line segment l5 we choose P to be the bitcodes 1001.  

Now, scan the bitcode of P from the first bit to the fourth bit and find the position of the bit at 

which the bit value 1 appears at the first time. For the line segment l5 it appears at the very first 

position. If the bit value 1 occurs at the first position then proceed to intersect the line segment 

with the UP edge of the window and assign the first bit value to its point of intersection as 0. 

Similarly, if the bit value 1 occurs at the second position while scanning the bit values at the 

first time then intersect the line segment PQ with the Down edge of the window and so on. This 

point of intersection may be labeled as P’. Clearly the line segment PP’ is outside the window 

and therefore rejected and the new line segment considered for dipping will be P’Q. 

 The coordinates of P’ and its remaining new bit values are computed. Now, by taking P as P’, 

again we have the new line segment PQ which will again be referred to Case 1 for clipping. 
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Figure 36: Line Clipping – Geometrically 

 

Geometrical study of the above type of clipping (it helps to find point of intersection of line PQ 

with any edge) figure 36.  

 

Let (x 
1
, y

1
) and (x

2
, y

2
) be the coordinates of P and Q respectively.    

 

1) Top case/above  

     if y
1 
> yw

max 
then 1

st 

bit of bit code = 1 (signifying above) else bit code = 0  

 

2) Bottom case/below case  

    if y
1 
< yw

min 
then 2

nd 

bit = 1 (i.e. below) else bit = 0  

3) Left case: if x
1 
< xw

min 
then 3

rd 

bit = 1 (i.e. left) else 0  

4) Right case: if x
1 
> xw

max 
then 4

th 

bit = 1 (i.e. right) else 0  

 

Similarly, the bit codes of the point Q will also be assigned. 

  

1) Top/above case:  

    equation of top edge is: y = yw
max 

. The equation of line PQ is  

     y – y
1 
= m (x – x

1
)         where,         m = (y

2 
– y

1
)/ (x

2 
– x

1
)  

 

  The coordinates of the point of intersection will be (x, yw
max

)  

  ∴equation of line   between point P and intersection point is  

     

     (yw
max 

– y
1
) = m ( x – x

1
)  

     rearrange we get  
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      x = x 
1 
+ (1/m) (yw

max 
– y

1
) -------------------- (A)  

 

     Hence, we get coordinates (x, yw
max

) i.e., coordinates of the intersection.  

 

2) Bottom/below edge start with y = yw
min 

and proceed as for above case.  

   ∴equation of line between intersection point (x’, yw
min

) and point Q i.e. (x
2
, y

2
) is  

    (yw
min 

– y
2
) = m (x′ – x

2
)  

    rearranging that we get,  

 

     x’ = x 
2 
+ (1/m) (yw

min 
– y

2
)  -------------------- (B)  

 

The coordinates of the point of intersection of PQ with the bottom edge will be  

 

(x
2 
+ (1/m) (yw

min 
– y

2
), ywmin)   

 

3) Left edge: the equation of left edge is x = xw
min

.  

    Now, the point of intersection is (xwmin, y).  

    Using 2 point from the equation of the line we get  

    (y – y
1
) = m (xw

min 
– x

1
)  

 

    Rearranging that, we get, y = y
1 
+ m (xw

min 
– x

1
). -------------------- (C)  

     

   Hence, we get value of xw
min 

and y both i.e. coordinates of intersection point is given by 

   (xwmin,y1+m(xwmin-x1) 

 

4) Right edge: proceed as in left edge case but start with x-xw
max

.  

     Now point of intersection is (xw
max

, y′).  

     Using 2 point form, the equation of the line is  

 

    (y′ – y
2
) = m (xw

max 
– x

2
)  

     y’= y2+ m(xwmax-x2) -------------------- (D)  

 

The coordinates of the intersection of PQ with the right edge will be  

 

     (xwmax,y2+m(xwmax-x2) 
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B- MidPoint Subdivision Line Clipping Algorithm: 

It is used for clipping line. The line is divided in two parts. Mid points of line is obtained by 

dividing it in two short segments. Again division is done, by finding midpoint. This process is 

continuing  until line of visible and invisible category is obtained. Let (xi,yi) are midpoint 

   
     

 
         

     

 
 

 

                   

 

Step1: find (x1+x2)/2  i.e. x3=(x1+x2)/2   

Step2: find x4=(x3+x1)/2   

Step3: find x5=(x3+x4)/2   

x5 lie on point of intersection of boundary of window. 

Algorithm of midpoint subdivision Line Clipping: 

Step1: Calculate the position of both endpoints of the line 

Step2: Perform OR operation on both of these endpoints 

Step3: If the OR operation gives 0000 

            then 

                    Line is guaranteed to be visible 

          else 

                  Perform AND operation on both endpoints. 

                  If AND ≠ 0000 

            then the line is invisible 

      else 

            AND=0000 

            then the line is clipped case. 
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Step4: For the line to be clipped. Find midpoint 

            Xm=(x1+x2)/2 

            Ym=(y1+y2)/2 

        Xm is midpoint of X coordinate. 

        Ymis midpoint of Y coordinate. 

Step5: Check each midpoint, whether it nearest to the boundary of a window or not. 

Step6: If the line is totally visible or totally rejected not found then repeat step 1 to 5. 

Step7: Stop  

Example 

Window coordinates xmin, xmax, ymin, ymax as (15,40,10,35), clip the line p1p2 where 

P1(10,20) & p2(30,40) using midpoint subdivision algorithm . 

 

Solution 

 

1-Ap1 

  
     

 
 =20 

  
     

 
 =30                        A(20,30) 

 A=0000 

P1=0001      & 

----------- 

      0000    midpoint A 

2-p1A 
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 =15 

  
  

 
 =25                            B(15,25) 

 P1=0001      &  

   B=0001 

----------- 

      0001     REJECTED    

3-BA 

 

  
  

 
 =15 

  
  

 
 =25                              B(15,25) 

A=0000      &  

B=0000 

----------- 

     0000              midpoint B    

4-Ap2 

  
  

 
 =25 

  
  

 
 =35 

C(25,35) 

  A=0000      &  

 P2=1000 

----------- 

      0000             midpoint  C  

5-AC 

A=0000      &  

C=0000 

----------- 

      0000              VISIBLE 

6-Cp2 

    C=1000      &  

  P2=1000 

----------- 

         1000                       REJECTED 
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Line segment Region code AND Result Action 

P1p2 
0001 

1000 
0000 Partially visible Find midpoint A 

P1A 
0001 

0000 
0000 Partially visible Midpoint B 

P1B 
0001 

0001 
0001 Invisible Rejected 

BA 
0000 

0000 
_ Completely visible Draw the line 

Ap2 
0000 

1000 
0000 Partially visible Midpoint C 

AC 
0000 

0000 
_ Completely visible Draw the line 

Cp2 
1000 

1000 
1000 Invisible Rejected 

 
3- Intersection Point 

If M is the slope of the line segment between points (X1, Y1) and (X2, Y2) then if X1 ≠ X2 
 

  
     

     
 

 

Then any point (X, Y) on the line is 

  
    

    
 

 

 If the line segment crosses a left or right window edge then X1 ≠ X2 and M has non 

denominator. 

 If the line crosses a top or bottom window edge then Y1 ≠ Y2 and the reciprocal of the 

slope 1/m has a nonzero denominator. 
 

The slope M is obtained from the two given endpoints. 
 

 If we are testing against a left or right direction the X value is known (the left or right 

edge value). 
 

The X value is substituted into the equation for Y. 

 Y = M * (X – X1) + Y1 

For top and bottom the Y value known then: 

                          X = 1/M * (Y - Y1) + X1 
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C: Polygon Clipping Algorithm 

A polygon can also be clipped by specifying the clipping window. Sutherland Hodgeman 

polygon clipping algorithm is used for polygon clipping. In this algorithm, all the vertices of the 

polygon are clipped against each edge of the clipping window. 
 

First the polygon is clipped against the left edge of the polygon window to get new vertices of 

the polygon. These new vertices are used to clip the polygon against right edge, top edge, 

bottom edge of the clipping window as shown in the figure 37. 

 
 

Figure 37: Polygon Before Cilppling 

While processing an edge of a polygon with clipping window, an intersection point is found if 

edge is not completely inside clipping window and the a partial edge from the intersection point 

to the outside edge is clipped. The figures 38-41 show left, right, top and bottom edge clippings: 

 
Figure 38: Clipping Left Edge                             Figure 39: Clipping Right Edge 

 
                    Figure 40: Clipping Top Edge                Figure 41: Clipping Bottom Edge 
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1. If the first vertex is an outside the window, the second vertex is inside the window. Then 

second vertex is added to the output list. The point of intersection of window boundary 

and polygon side (edge) is also added to the output line. 

2. If both vertexes are inside window boundary. Then only second vertex is added to the 

output list. 

3. If the first vertex is inside the window and second is an outside window. The edge which 

intersects with window is added to output list. 

4. If both vertices are the outside window, then nothing is added to output list. 

The input polygon is:     V1, V2, V3, V4  (set of vertices) 

 

When we make Left Clipping the result is: V2 P1 P2 V1 

When we make Right Clipping the result is: P2V1V2P1 

When we make Top Clipping the result is: P1 P2 V1V2 

When we make Bottom Clipping the result is: V1V2 P1P2  
 

We apply the operation 4 times (Bottom, right, top, left) 

 
 

Left     : -      V2 P1 P2 V1 

Bottom: -      P1 P2 V1 V2 

Right   : -      P2 V1 V2 P1 

Top     : -      P1 P2 V1 V2 
 

 

- Clips a polygon against each edge of the window. 

- For each edge it inputs a list of vertices and outputs a new list of vertices. 

- The input list is a sequence of consecutive vertices of the polygon obtained from the previous 

edge clipping. 
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Example1 

 

There are 4 possible cases: 

Case 1: 

First and second V1, V2 inside the window, V2 is sent to the output list. 

Case 2: 

First vertex V2 inside and the second vertex V3 outside the window, the intersection point (P1) 

of the side of the polygon joining the vertices and the edge is added to the output list. 
 

Case 3: 

Both vertices V3, V4 outside the window and no point are output. 
 

Case 4: 

First vertex V4 outside the window and the second vertex V1 inside the window, the 

intersection point (P2) and the second vertex V1 are added to the output list. 
 

The result of this left clipping is the transformation of 
 

input list {V1, V2, V3, V4} to the         output list {V2, P1, P2, V1}. 
 

Example2 

Input: Polygon: (100,150), (200,250), (300,200) 

Clipping Area: (100,300), (300,300), (200,100)  

Output: (242, 185) (166, 166) (150, 200) (200, 250) (260, 220)  
 

 

 

5.2 Aspect Ratio 
Aspect Ratio: is the ratio of the horizontal width to the vertical height. 

 

- The horizontal and vertical plots of an equal number of pixels have different lengths. 

- The ratio is a consequence of non – square pixels and rectangular display screen. 
 



100 
  

Example 

If we plot eight pixels horizontally on the display screen and then we measure the line, we find 

that it is 0.3 cm wide. If we plot eight pixels vertically on the display screen and then we 

measure the line, we find that its 0.4 cm height.  
 

The A.R = 0.4 / 0.3 = 1.33   

New number of pixels = Old number of pixels * AR   

New number of pixels = 8 * 1.33    = 10.64 ≈ 11 pixels. 

11 – 8 = 3 pixels will be added to the horizontal line. Figure 42. 

 

Figure 42: pixels added to the horizontal line 

 

5.3 The Normalized Device Co-ordinate 
Different display devices may have different screen sizes as measured in pixels. If we wish our 

program to be devices independent we should specify the coordinates in some units other than 

pixels and then use the interpreter to convert these coordinates to the appropriates values for 

particular display, we are using device independent units are called the normalized device 

coordinates. We will consider using only a square portion of the device. 

Windows in World Coordinates Space (WCS) will be mapped to viewports that are specified 

within a unit square in NDC space. Map viewports from NDC coordinates to the screen, figure  

43. 

 

 
 

Figure 43: Mapping from WCS to Screen Space 
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For 2D drawing, the visible range of the display window is from [-1,-1] to [1,1]. In other words, 

you need to transform your points to this range so that they will be visible. This is called 

Normalized Device Coordinate (NDC) system, Figure 44. 

 

 
 

Figure 44: Normalized Device Coordinates 

 

A pixel in a window is referenced as two integers (i,j). This is called the screen coordinate (SC) 

System, figure 45. 

 
Figure 45: Screen Coordinates 

 

Just do a linear mapping from [-1,-1] × [1,1] to [0,0] × [Imax, Jmax].  

Assume (x,y) is in NDC, (i,j) is in SC, then 
 

i = (x – (-1))/2.0 * Imax 

j = (y – (-1))/2.0 * Jmax 
 

If you do not want to use the entire window, you can define a sub-area called ‘Viewport’ as your 

drawing area. Your drawing will only show up in the viewport. Your points will be mapped 

from NDC to viewport, figure 46. 

 
Figure 46: Mapping from NDC to viewport 
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Convert the vertex coordinates from the normalized device coordinates (NDC) to the screen 

space, the NDC has the range of (-1,1) in both X and Y for everything that is visible. 

 

Just do a linear mapping from [-1,-1] × [1,1] to [Imin,Jmin] × [Imax, Jmax].  

Assume (x,y) is in NDC, (i,j) is in SC, then 

 

i = (x – (-1))/2.0 * (Imax-Imin) + Imin 

j = (y – (-1))/2.0 * (Jmax-Jmin) + Jmin 

 

Viewport: the rectangular region in the screen for displaying the graphical objects (contents of 

the window). Viewport is defined using the screen coordinate system in pixels [Imin, Jmin], 

Figure 47. That is done when we want to display different views of the image in different 

regions of the screen. Using the same window and several viewports, the same object can be 

placed in different regions. Choosing different windows and viewports results in a screen with 

multiple images. 

 
 

Figure 47: Viewport defined using screen coordinate system 

 

As we discussed, only points that are mapped to the [-1,-1] – [1,1] in NDC space are visible, 

figure 48. 

 

 
 

                                                i = (x – (-1))/2.0 * (Imax-Imin) + Imin 

j = (y – (-1))/2.0 * (Jmax-Jmin) + Jmin 

 

Figure 48:Viewport Mapping 
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Windowing: is the capability of displaying part of the Word Coordinate System (WCS) image, 

enclosed in a rectangular region. That is when the image described in the world coordinate 

system is too complicated to be viewed clearly on the screen and the user may want to view ( 

and enlarge) only a portion of the image. Adjusting the size of the window has the effect of 

enlarging or shrinking or even distorting a portion of the image or the entire image. 

 

World coordinate system: is a user-defined coordinate system chosen for a specific 

application. These screen independent coordinate can have a large or small numeric range, 

negative values and fraction. 

 
 

NDC (Normalized Device Coordinate): We need to use a device independent coordinate 

system called (NCD) to describe the viewport. This (NCD) better than using the coordinate of 

the display screen to describe the viewport. The (NCD) system allows the application 

programmer to write graphics programs independent of the resolution of the display screen 

Point (-1, -1) in NDC is located at the bottom left corner (Y up), figure 49. 
 

 

 
 

Figure 49: Normalized Device Coordinates Resize with the Screen Size  
 

1) Framebuffer Coordinate (Viewport coordinate): when we write into attachment or 

read from attachment or copy/bit between attachments, we use framebuffer coordinate to 

specify the location. The origin (0, 0) is located at the top-left corner (Y down),  figure 

50. 
 
 

 
Figure 50: Framebuffer Coordinate 

https://i.stack.imgur.com/ZQRhP.png
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2) Texture Coordinate: when we upload texture into memory or sample from texture, we 

use texture coordinate. The origin (0, 0) is located at the top-left corner (Ydown). 

Figure 51. 
 

 
Figure 51: Texture Coordinate 

 

5.4 Window to Viewport mapping 
It is a transformation function that converts from Word coordinate system to (NCD). It 

produces on a specific view of the image. 

 

To change the view we must change the window and/or the viewport and record this mapping. 

The window and the viewport are described by the coordinates of the lower left vertex. 

 

5.5 Window to viewport mapping algorithm 
We take the coordinates of the points of the object in a designated window and transform them 

to give the coordinates of the corresponding points in the viewport on the screen. 

This mapping requires three steps: 

 

1- Window Shift 

     Shift the lower left corner of the window to the origin: 

           1    0    0 

  W=   0    1    0 

          -a   -b    1 

https://i.stack.imgur.com/CE593.png
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2- Scale the window dimensions to the dimensions of the viewport.  

    The scaling involves a factor of 

 

    ( C – A)            in the X direction 

       (c-a) 

    ( D – B)            in the Y direction 

       (d-b) 

The matrix of the local scaling is: 

 

   

 S= 

 

 

3- Viewport shift 

    Shift the lower left corner of the viewport from the screen origin to its proper position. 

         1    0    0 

V=    0    1    0 

         A   B    1 

 

Multiplying the three matrices in order, we get a single matrix for the window to viewport 

mapping: 

 

M = W * S * V 
 

Or by using the equation 

 

X1 = (X – a) * (VL/WL) + A 

Y1 = (Y – b) * (VH/WH)+ B 

  

Where ( X, Y) is the point in the window and to be mapped to the point in the viewport (X1, 

Y1) 

 

 

 

 

 

( C – A) 

(c-a) 
0 0 

0 
 ( D – B) 

(d-b) 
0 

0 0 1 



106 
  

Example 

Find the normalization transformation that maps a window whose lower left corner is at (1,3) 

and upper right corner is at (3,5) onto a viewport that has lower left corner at (0.2,0.5) and 

upper right corner (0.8,0.9) .What position of point p(2.5,3.5) in window onto viewport 

coordinate? 

 

Solution The matrix for the window shift is:  

 

         1   0   0 

W=   0   1  1 

        -1  -3  1         back to origin (0,0) 

 

The scaling matrix is   

 

      (0.8-0.2)/(3-1)                0                         0 

S=         0                      (0.9-0.5)/(5-3)            0 

             0                              0                         1 
 

 

         0.3    0     0 

S=    0      0.2   0 

         0       0    1 
 

 

The matrix for the viewport shift 

        1      0     0 

V=   0      1     1 

       0.2   0.5   1 

When we multiply these three matrices together (remembering that order matters) we get 
 

M=W S V 
        

         0.3     0    0 

    =    0     0.2   1 

       -0.1   -0.1   1 

 

The point P has coordinate (2.5, 3.5) so its homogeneous vector is [2.5 3.5 1]. We multiply this 

by the matrix M and obtain: 
 
 

                             0.3     0      0 

[2.5    3.5   1]       0       0.2    1      = [ 0.65    0.6    1] 

                           -0.1   -0.1    1 

 
 

Thus the coordinate of P* in the viewport are (0.65, 0.6). 
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Example: Point P is to be displayed on part of a screen as indicated in the figure. Describe the 

sequence of transformation that will transform the window shown to the viewport indicated and 

give the matrix for each. 
 

Calculation the coordinates of P where it appears on the screen 

 

OR 

Find the normalization transformation that maps a window whose lower left corner is at(1,3) 

and upper right corner is at (3,5) onto a viewport that has a lower left corner (0.2,0.5) and upper 

right corner (0.8,0.9), what position of point p in the window is (2.5,3.5) onto viewport 

coordinate? 

Solution 

         1   0    0 

W=   0   1    0 

        -1  -3   1 

 

 

 

 

 

 

 S= 

 

 

                1      0      0 

        V=     0      1      0 

               0.2   0.5    1 

 

 

( 0.8 – 0.2) 

(3-1) 
0 0 

0 
( 0.9 – 0.5) 

(5-3) 
0 

0 0 1 
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So the single matrix M will be: 

 

               0.3      0     0 

M=   0       0.2   0 

              -0.1   -0.1   1 

 

P1 (in viewport) = P (in window) * M 

 

                            = [2.5  3.5  1] ×  0.3      0      0 

                                      0       0.2    0 

                                -0.1   -0.1   1 

 

OR by using the equation 

  

X1 = (2.5-1) * (0.6/2) + 0.2 = 0.65  

 

Y1= (3.5– 3) * (0.9-0.5)/(5-3) + 0.5 = 0.6 
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Transformations 
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6. Three – Dimensional Transformations 
 

In the 2D system, we use only two coordinates X and Y but in 3D, an extra coordinate Z is 

added. Furthermore, 3D graphics components are now a part of almost every personal computer 

and, although traditionally intended for graphics-intensive software such as games, they are 

increasingly being used by other applications. The techniques used in computer graphics to 

display 3-D world are a mathematical model instead of lens to create the image. 

 

1- Coordinates Systems 

A three- dimensional coordinate system can be view as an extension of the two dimension 

coordinate system. The third – dimension depth is represented by the Z – axis figure 52. A 

point can be described by triple ( X , Y , Z ) of coordinate values. 

 

Figure 52: Three- Dimensional Coordinates 

2. 3D Transformations  
A transformation is the process of mapping points to other positions. The manipulation viewing 

and creation of 3-D images require the use of 3-D geometric and coordinate transformations. 

Just as in the case of 2D, we represent the transformation operations as a series of matrix 

operations. Since in the 2-dimensional case we were representing a point (x,y) as a tuple [x y 1], 

in the 3-dimensional, a point (x,y,z) will be associated with homogeneous row vector [x,y, z, 1]. 

We can represent all three dimensional linear transformation by multiplication of 4*4 matrix.   

 
  2.1 Translation 
It is the movement of an object from one position to another position. Translation is done using 

translation vectors. There are three vectors in 3D instead of two. These vectors are in x, y, and z 

directions. Translation in the x-direction is represented using Tx. The translation is y-direction is 

represented using Ty. The translation in the z- direction is represented using Tz. 
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If P is a point having co-ordinates in three directions (x, y, z) is translated, then after translation 

its coordinates will be (x
1
 y

1
 z

1
) after translation. Tx Ty Tz are translation vectors in x, y, and z 

directions respectively. 

          x
1
=x+ Tx 

         y
1
=y+Ty 

         z
1
=z+ Tz 

Three-dimensional transformations are performed by transforming each vertex of the object. If 

an object has five corners, then the translation will be accomplished by translating all five 

points to new locations. Figure 53 shows the effect of translation: 

 

 

 

Figure 53: 3D Translation 

A point can be translated in 3D by adding translation coordinate (Tx, Ty, Tz) to the original 

coordinate (X, Y, Z) to get the new coordinate (X`, Y`, Z`). 
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Matrix for translation 

     1      0     0     0                    1     0     0    Tx 

     0      1     0     0         or        0     1     0    Ty 

     0      0     1     0                    0     0     1    Tz 

     Tx    Ty   Tz    1                    0     0     0    1 

 

 

          1     0     0     0 

T=     0     1     0     0 

          0     0     1     0 

          Tx   Ty    Tz   1 

 

P`= P.T 
 

                                          1     0     0     0 

[x` y` z` 1] = [x  y  z 1]     0     1     0     0         

                                          0     0     1     0 

                                          Tx    Ty   Tz   1 

 

                   =  [x+Tx     y+Ty     z+Tz     1] 
 

A point ( x , y , z ) is translated to a new position( x` , y` , z` ) by move it Tx units in the X – 

direction and by Ty units in the Y – direction and Tz units in Z – direction. Mathematically this 

can be represented as:- 
 

x`=x+Tx 

y`=y+Ty 

z`=z+Tz 
 

 

Example 

Move a point P that is located at (3, 4, 5) to a new location with distance (2,4,6) units. 
 

Given, P= [3, 4, 5, 1] 

Tx=2,   Ty=4,  Tz=6 
 

 

We apply the translation transformation and obtain the result as: 

 

                  1   0   0   0                         

[3 4 5 1]    0   1   0   0     = [3+2+4+4+5+6+1] = [5   8   11   1]          

                  0   0   1   0                        

                  2   4   6   1                        
 

Hence the result is the point P being shifted to a new position P’. 
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2.2 Scaling 
Scaling is used to change the size of an object. The size can be increased or decreased. Scaling 

can be achieved by multiplying the original coordinates of the object with the scaling factor to 

get the desired result. If the scaling factor is greater than 1, the object is enlarge, if the factor is 

less than 1, the object is made smaller, a factor of 1 has no effect on the object.  Whenever 

scaling is performed, there is one point that remains at the same location. This is called fixed 

point of the scaling transformation. In the scaling, three factors are required Sx Sy and Sz.  

Sx=Scaling factor in x- direction 

Sy=Scaling factor in y-direction 

Sz=Scaling factor in z-direction 

 Figure 54.The letter S denotes the basic scaling matrix. 

     
Figure 54: 3D Scaling 

 

a) To scale an object from origin point we used the following matrix. 
 

 

          sx     0     0     0 

 S=     0     sy     0     0 

          0      0     sz    0 

          0      0     0     1 
 
 

b) To scale an object from fixed point ( xp , yp , zp ), figure 55,we perform the following three 

steps: 

 

step1: Translate the fixed point ( xp , yp , zp ) to the origin. Every point ( x , y , z ) is moved to a 

new point ( xp , yp , zp ): 
 

x1= x - xp 

y1= y - yp 

z1= z - zp 
 
 

step2: Scale these translate points with the origin as the fixed points: 
 

x2= x1 × sx 

y2= y1 × sy 

z2= z1 × sz 
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step3: The fixed point is translated to its original position ( xp , yp , zp ): 
 

x3= x2 + xp 

y3= y2 + yp 

z3= z2 + zp 
 

                                           1      0      0     0          sx     0      0     0              1     0     0     0 

[x1 y1 z1 1] = [x  y  z 1]×     0      1      0     0    ×    0     sy   0    0    ×    0     1     0     0 

                                           0      0      1     0          0     0    sz    0          0     0     1     0 

                                          -xp    -yp   -zp    1          1    1     1    1          xp    yp    zp    1 

 
 

 

 
 

 

 
 

 

 
Figure 55: Scale an object from fixed point 
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2.3 Rotation  
 

It is moving of an object about an angle. Movement can be anticlockwise or clockwise. 3D 

rotation is complex as compared to the 2D rotation. For 2D we describe the angle of rotation, 

but for a 3D angle of rotation and axis of rotation are required. The axis can be either x or y or z, 

figure 56 and figure 57 explain the rotation about various axes.   

 

 

 
                          Rotation about Z axes Rotation about X axes Rotation about Y axes 

  

Figure 56: Axis-aligned rotations 

 

 
Figure 57: 3DRotation  

  

 

The matrices that are used to achieve rotation can be shown as: 
 

a) Rotation about X – axis: 

 1          0               0         0 

Rx(Ø) =     0      cos(Ø)     -sin(Ø)    0 

                  0      sin(Ø)      cos(Ø)    0 

                  0         0               0         1 
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b) Rotation about Y – axis: 

 cos(Ø)       0        sin(Ø)    0 

Ry(Ø) =        0             1         0           0 

                  -sin(Ø)       0     cos(Ø)     0 

                     0            0          0          1 
 

c) Rotation about Z – axis: 

  cos(Ø)    -sin(Ø)    0    0 

Rz(Ø) =      sin(Ø)     cos(Ø)    0    0 

                     0             0           1    0 

                     0             0           0    1 

 

Example  

Draw the figure (0,0,0) , (0,1,0 ) ,(0,1,3) , (0,0,3) , (2,0,0) , (2,3,0), (2,0,3) , (2,1,3), and find:  

 

a) Translate it to the point (0,3,0) 

b) Scaling 4 times its size. 

c) Rotate its (90
o
) about the Z – axis. 

Note: sin (90) = 1 , cos (90) = 0 

 

Solution 

a-Translate it to the point (0,3,0) 

0  0  0  1                              0  3  0  1 

0  1  0  1                              0  4  0  1 

0  1  3  1         1  0  0  0        0  4  3  1 

0  0  3  1         0  1  0  0        0  3  3  1 

2  0  0  1   ×    0  0  1  0  =    2  3  0  1 

2  3  0  1         0  3  0  1        2  6  0  1 

2  0  3  1                               2  3  3  1 

2  1  3  1                               2  4  3  1 
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b- Scaling 4 times its size 

 

0  0  0  1                              0    0     0    1 

0  1  0  1                              0    4     0    1 

0  1  3  1         4  0  0  0        0    4   12    1 

0  0  3  1         0  4  0  0        0    0   12    1 

2  0  0  1   ×    0  0  4  0  =    8    0    0    1 

2  3  0  1         0  0  0  1        8   12   0     1 

2  0  3  1                               8   0   12    1 

2  1  3  1                               8   4   12    1 
 

 

c- Rotate its (90o) about the Z – axis 
 

0  0  0  1                                                          0    0    0    1               

0  1  0  1                                                          1    0    0    1 

0  1  3  1         cos(90)   -sin(90)    0    0            1    0    3    1        

0  0  3  1         sin(90)    cos(90)    0    0            0    0    3    1 

2  0  0  1   ×        0           0           1    0      =    0   -2    0    1 

2  3  0  1             0           0           0    1            3   -2    0    1 

2  0  3  1                                                          0   -2    3    1 

2  1  3  1                                                          1   -2    3    1 
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Part Seven 
 

 

Three – Dimensional 

Models 
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7.1 What is 3D Modeling? 

The term “3D modeling” refers to the process of creating a three-dimensional representation of 

an object using specialized software. This representation, called a 3D model, can convey an 

object’s size, shape and texture. The process works with points, lines, and polygons to create 

the 3D shapes within the software.  

 

7.2 Usage of 3D Modeling  

3D models can be used within a variety of fields. Some of the most common applications are: 

 

 Planning buildings using architectural visualization. 

 3D printing 

 Animation 

 Designing 3D characters for animated films and video games. 

 Building up of a product design. 

 Creating digitized 3D garments for the fashion industry. 

 Publishing: The possibilities for book covers and images designed with 3D modeling are 

endless. 

 Gaming industry: 3D modeling is used to create game characters and scenes. 

 Medicine: 3D modeling is used to design prosthetics, parts to repair damaged organs, 

even dentists use 3D modeling. 

 
7.3 3D Models Creating Method  

There are various techniques for creating a 3D model. Regardless of what industry you are 

using 3D modeling for, there are four main methods to choose from: 

1. Primitive Modeling 

2. Polygonal Modeling 

3. Rational B-Spline Modeling 

4. Non-Uniform Rational Basis Spline (NURBS) 

5. CAD Software 

a- Solid Modeling 

b- Wireframe Modeling 

c- Surface Modeling 

 

 

 

 

 

https://all3dp.com/2/the-most-common-3d-printed-prosthetics/
https://all3dp.com/2/most-promising-3d-printed-organs-for-transplant/
https://all3dp.com/2/dental-3d-printing-guide/
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7.3.1 Primitive Modeling 

This type of 3D modeling mostly uses spheres, cubes, and other variations of these two shapes 

to put together the desired shapes. It is called primitive because it is a very rudimentary form of 

3D modeling, mainly created through the combination of different pre-existing shapes. 

This kind of modeling generally utilizes basic Boolean processors to get the right shapes and 

outlines. Boolean operators are some of the most common ways of generating three-

dimensional surfaces and shapes. Designers can combine two different shapes or subtract one 

shape from another to create a new object. 

7.3.2 Polygonal Modeling 

This type of 3D modeling is done by working with X, Y, and Z coordinates to define different 

shapes and surfaces and then combining the different surfaces into one giant shape or model. 

Figures 58,59. 

When designers use the polygonal modeling technique, they typically begin by creating a wire 

mesh in the desired shape – this requires a good working knowledge of the polygonal mesh 

theory, which means that this type of modeling might be too complex for beginners. 

 

Figure 58: Polygons 

 

Figure 59: Polygons of a model are shaped using various tools to form a final model 

https://en.wikipedia.org/wiki/Polygon_mesh
https://en.wikipedia.org/wiki/Polygon_mesh
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7.3.3 Rational B-Spline Modeling 
 

Rational B-Spline Modeling is the most common type of 3D modeling and also bases its 

technology on the combining and adjusting of geometric forms. Users begin by creating the 

dimensions of each shape, and these polygons can then be twisted and curved to get to achieve 

the desired 3D design. 
 

7.3.4 Non-Uniform Rational Basis Spline (NURBS) 
 

Are mathematical representations of 3D geometry that can accurately describe any shape from a 

simple 2D line, circle, arc, or curve to the most complex 3D organic free-form surface or solid.  

Because of their flexibility and accuracy, NURBS models can be used in any process, from 

illustration and animation to manufacturing. 
 

7.3.5 CAD Software 
 

CAD (Computer Aided Design) software is an important invention with regards to 3D  

modeling. It helps in the visualization of the desired objects, designs, and models in virtual  

reality. Some of the important tasks that can be accomplished with the use of CAD software are 

3D printing, 3D sculpting, 3D rendering, and 3D modeling. The calculations involved in the 

making of 3D objects are undertaken by CAD software. The job of the designer is to define the 

shape and size of the 3D objects he/she wishes to create.    

There are three major types of 3D modeling that fall under the rubric of CAD software: solid 

modeling, wireframe modeling, and surface modeling.   

A- Solid Modeling 
 

Solid Modeling is the computer modeling of 3D solid objects. The objective of Solid Modeling 

is to ensure that every surface is geometrically correct. It is considered the most complex aspect 

to master in CAD because it requires the CAD software to simulate the object from within and 

outside. This is critical as it lets designers provide cutaways of the design, such as an engine 

and its components. Figure 60. 

In short, solid modeling allows the design, creation, visualization and animation of digital 3D 

models. The designer is able to see how the design looks and works from the very beginning. 

 

 

Figure 60: Solid Model 

https://foyr.com/learn/3d-visualization-software/
https://www.spatial.com/resources/glossary/cad?hsLang=en
https://www.spatial.com/products/3d-visualization?hsLang=en
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B-  Wireframe modeling 

Wireframe modeling represents shapes as a network of vertices. Each geometrical face is made 

out of minimum three vertices and every vertex can be important for at least one appearance. 

The size and state of things are altered by changing the position of every vertex. 

 Numerous wireframe demonstrating devices use triangles as their fundamental components, 

and the more triangles use, the real it looks. This is shown by “polygon check”, the absolute 

number of triangles (or other planar shapes) contained inside the wireframe of a model. 

 Wireframe modeling is based on generating a 3D model by “bending a wire” and following the 

edges of an object. These 3D models consist entirely of points, arcs, circles, curves, and lines. 

A wireframe object is not recognized as solid. Instead, the boundary of the object is recorded as 

points and their connections. Figure 61. 
 

  
   Figure 61: Wireframe of Blocks and Cylinder  

    C- Surface Modeling 

Surface modeling is a mathematical method usually provided in computer-aided design 

applications for displaying solid-appearing objects. Surface modeling makes it possible for 

users to look at the specific object at specific angles with solid surfaces. It focuses on the 

external aspect of a 3D model, allowing you to view the 3D model from different angles. Figure 

62.  It’s mostly used in architectural illustrations and animations in video games.  

       

Figure 62: Shapes and Exterior Curves are First Defined in Surface Modeling 
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The Process of 3D Modeling 

 


