
OS/Practical Part

Operating system algorithms are the methods or rules that an
operating system uses to manage the processes on the CPU and
other resources. They are designed to achieve various goals such as
maximizing CPU utilization, fair allocation of CPU, minimizing
turnaround time, waiting time and overhead.

There are many types of operating system algorithms, but some of
the most common ones are:

 First-Come, First-Served (FCFS) Scheduling: This algorithm
assigns the CPU to the first process that arrives in the ready queue.
It is simple and easy to implement, but it has a high average
waiting time and poor performance in batch systems where
processes have fixed arrival times.

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.
 It is a non-preemptive
 Easy to understand and implement.
 Its implementation is based on FIFO queue.
 Poor in performance as average wait time is high.

Wait time of each process is as follows −

Process Wait Time : Service
Time - Arrival Time

P0 0 - 0 = 0
P1 5 - 1 = 4
P2 8 - 2 = 6
P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

// C++ program to Calculate Waiting
// Time for given Processes
#include <iostream>
using namespace std;

// Function to Calculate waiting time
// and average waiting time
void CalculateWaitingTime(int at[],
 int bt[], int N)
{

 // Declare the array for waiting
 // time
 int wt[N];

 // Waiting time for first process
 // is 0
 wt[0] = 0;

 // Print waiting time process 1
 cout << "PN\t\tAT\t\t"
 << "BT\t\tWT\n\n";
 cout << "1"
 << "\t\t" << at[0] << "\t\t"
 << bt[0] << "\t\t" << wt[0] << endl;

 // Calculating waiting time for
 // each process from the given
 // formula
 for (int i = 1; i < 5; i++) {
 wt[i] = (at[i - 1] + bt[i - 1]
 + wt[i - 1]) - at[i];

 // Print the waiting time for
 // each process
 cout << i + 1 << "\t\t" << at[i]
 << "\t\t" << bt[i] << "\t\t"
 << wt[i] << endl;
 }

 // Declare variable to calculate
 // average
 float average;
 float sum = 0;

 // Loop to calculate sum of all
 // waiting time
 for (int i = 0; i < 5; i++) {
 sum = sum + wt[i];
 }

 // Find average waiting time
 // by dividing it by no. of process
 average = sum / 5;

 // Print Average Waiting Time
 cout << "\nAverage waiting time = "
 << average;
}

// Driver code
int main()
{
 // Number of process
 int N = 5;

 // Array for Arrival time
 int at[] = { 0, 1, 2, 3, 4 };

 // Array for Burst Time
 int bt[] = { 4, 3, 1, 2, 5 };

 // Function call to find
 // waiting time
 CalculateWaitingTime(at, bt, N);
 return 0;
}
//this code is contributed by snehalsalokhe

Shortest Job First Algorithm

#include<iostream>
#include<algorithm>
using namespace std;

struct node{
 char pname[50];
 int btime;
 int atime;
}a[50];

void insert(int n){
 int i;
 for(i=0;i<n;i++){
 cout<<"Enter name of process "<<i+1<<"\n";
 cin>>a[i].pname;
 cout<<"Enter arrival time of process "<<i+1<<"\n";
 cin>>a[i].atime;
 cout<<"Enter burst time of process "<<i+1<<"\n";
 cin>>a[i].btime;
 }
}

bool btimeSort(node a,node b){
 return a.btime < b.btime;
}

void disp(int n){
 int ttime=0,i;
 int j,tArray[n];
 for(i=0;i<n;i++){
 j=i;
 while(a[j].atime<=ttime&&j!=n){
 j++;
 }
 sort(a+i,a+j,btimeSort);
 tArray[i]=ttime;
 ttime+=a[i].btime;
 }
 tArray[i] = ttime;

 float averageWaitingTime=0;
 float averageTAT=0;
 cout<<"\n";
 cout<<"P.Name AT\tBT\tWT\tTAT\n";
 for (i=0; i<n; i++){
 cout << a[i].pname << "\t";
 cout << a[i].atime << "\t";
 cout << a[i].btime << "\t";
 cout << tArray[i]-a[i].atime << "\t";
 averageWaitingTime+=tArray[i]-a[i].atime;
 cout << tArray[i]-a[i].atime+a[i].btime << "\t";
 averageTAT+=tArray[i]-a[i].atime+a[i].btime;
 cout <<"\n";
 }
 cout<<"\n";
 cout<<"\nGantt Chart\n";
 for (i=0; i<n; i++){
 cout <<"| "<< a[i].pname << " ";
 }
 cout<<"\n";

 for (i=0; i<n+1; i++){
 cout << tArray[i] << "\t";
 }
 cout<<"\n";
 cout<<"Average Waiting time: "<<(float)averageWaitingTime/(float)n<<endl;
 cout<<"Average turn around time: "<<(float)averageTAT/(float)n<<endl;

}

int main(){
 int nop,choice,i;
 cout<<"Enter number of processes\n";
 cin>>nop;
 insert(nop);
 disp(nop);
// system("pause");
 return 0;
}

First Fit Algorithm for Memory Management

In the first fit, partition is allocated which is first sufficient from the top

of Main Memory.

Problem Statement
Given block sizes and process size we need to find which block is

assigned to which process under first fit algorithm.

 Example:

 Input : block_Size[] = {100, 500, 200, 300, 600};

Process_Size[] = {212, 417, 112, 426};

 Output:

Process No. Process Size Block no.

1 212 2

2 417 5

3 112 2

4 426 Not allocated

Implementation

- Input memory blocks and processes with sizes.

-Initialize all memory blocks as free.

Start by picking each process and check if it can be assigned to current

block. 'If size-of-process <= size-of-block if yes then assign and check

for next process.

- If not then keep checking the further blocks.

Example

Given:

block_Size[] = {100, 500, 200, 300, 600};

 process_Size[] = {212, 417, 112, 426};

 n =number of processes = 4,

m =number of available blocks = 5

let allocation be an array of size n=4 and initialize it with -1

-1 -1 -1 -1

i=0 process_size[0]=212

100 500 200 300 600

First fit block_size=500

allocation[0]=1

block_size[1]-=212=500-212=288

--

i=1 process_size[1]=417

100 288 200 300 600

First fit block_size=066

allocation[1]=4

block_size[1]-=414=066-414=181

166 888 166 181

212

417

i=2 process_size[2]=112

166 888 866 166 181

first fit block_size=288

allocation[2]=1

block_size[2]-=112=288-112=176

100 176 200 300 183

i=3 process_size[3]=426

first fit block _ size= not available

allocation[3]=-1 (remains)

Allocation

1 4 1 -1

Process No.

Process size

Block no.

1 212 2

2 417 5

3 112 2

4 426 Not allocated

112

Advantages
Its advantage is that it is the fastest search as it searches only the first

block i.e. enough to assign a process.

Disadvantages

it may create problems of not allowing processes to take space even if it

was possible to allocate. Consider the above example, process number 4

(of size 426) does not get memory. However it was possible to allocate

memory if we had allocated using best fit algorithm

#include <iostream>
#include <cstring>
using namespace std;

void firstFit(int blockSize[], int m, int processSize[], int n) {
 int allocation[n];
 memset(allocation, -1, sizeof(allocation));

 for (int i = 0; i < n; i++) {
 for (int j = 0; j < m; j++) {
 if (blockSize[j] >= processSize[i]) {
 allocation[i] = j;
 blockSize[j] -= processSize[i];
 break;
 }
 }
 }

 cout << "\nProcess No.\tProcess Size\tBlock no.\n";
 for (int i = 0; i < n; i++) {
 cout << " " << i + 1 << "\t\t" << processSize[i] << "\t\t";
 if (allocation[i] != -1)
 cout << allocation[i] + 1;
 else
 cout << "Not Allocated";
 cout << endl;
 }
}

int main() {
 int blockSize[] = {155, 280, 230, 145, 400, 330};
 int processSize[] = {312, 215, 265, 140, 290};
 int m = sizeof(blockSize) / sizeof(blockSize[0]);
 int n = sizeof(processSize) / sizeof(processSize[0]);

 firstFit(blockSize, m, processSize, n);

 return 0;
}

Best Fit Algorithm for Memory Management

In the best fit allocates, the process to a partition which is the smallest

sufficient partition among the free available partition.

Problem Statement
Given block sizes and process size we need to find which block is

assigned to which process under best fit algorithm.

 Example:

 Input : block_Size[] = {100, 500, 200, 300, 600};

Process_Size[] = {212, 417, 112, 426};

 Output:

Process No. Process Size Block no.

1 212 4

2 417 3

3 112 2

4 426 5

Implementation

- Input memory blocks and processes with sizes.

-Initialize all memory blocks as free.

Start by picking each process and find the minimum block size that can

be assigned to current process i.e find min

(block_Size[1],block_size[2],….block_size[n]> process_Size[current],if

found then assigned it to the current process

- If not then leave that process and keep checking the further processes.

Example

Given:

block_Size[] = {100, 500, 200, 300, 600};

 process_Size[] = {212, 417, 112, 426};

 n =number of processes = 4,

m =number of available blocks = 5

let allocation be an array of size n=4 and initialize it with -1

-1 -1 -1 -1

i=0 process_size[0]=212

100 500 200 300 600

best fit block_size=300

allocation[0]=3

block_size[3]-=212=333-212=88

--

i=1 process_size[1]=417

100 533 200 88 600

best fit block_size=533

allocation[1]=1

block_size[1]-=500-417=83

212

417

i=2 process_size[2]=112

133 83 033 88 600

best fit block_size=033

allocation[2]=2

block_size[2]-=112=200-112=88

100 83 88 88 600

i=3 process_size[3]=426

best fit block _ size= 600

allocation[3]=4

block_size[3]-=600-426-174

100 83 88 88 174

Allocation

3 1 2 4

Process No.

Process size

Block no.

1 212 4

2 417 2

3 112 3

4 426 5

112

426

Although, best fit minimizes the wastage space ,it consumes a lot of

processor time for searching the block which is close to required size.

Also, best fit may perform poorer than other algorithms in some cases.

#include <iostream>
#include <cstring>
using namespace std;

void bestFit(int blockSize[], int m, int processSize[], int n) {
 int allocation[n];
 memset(allocation, -1, sizeof(allocation));

 for (int i = 0; i < n; i++) {
 int bestIdx = -1;
 for (int j = 0; j < m; j++) {
 if (blockSize[j] >= processSize[i]) {
 if (bestIdx == -1 || blockSize[bestIdx] > blockSize[j]) {
 bestIdx = j;
 }
 }
 }

 if (bestIdx != -1) {
 allocation[i] = bestIdx;
 blockSize[bestIdx] -= processSize[i];
 }
 }

 cout << "\nProcess No.\tProcess Size\tBlock no.\n";
 for (int i = 0; i < n; i++) {
 cout << " " << i + 1 << "\t\t" << processSize[i] << "\t\t";
 if (allocation[i] != -1)
 cout << allocation[i] + 1;
 else
 cout << "Not Allocated";
 cout << endl;
 }
}

int main() {
 int blockSize[] = {155, 280, 230, 145, 400, 330};
 int processSize[] = {312, 215, 265, 140, 290};
 int m = sizeof(blockSize) / sizeof(blockSize[0]);
 int n = sizeof(processSize) / sizeof(processSize[0]);

 bestFit(blockSize, m, processSize, n);

 return 0;
}

Worst Fit Algorithm

Worst Fit allocates a process to the partition which is largest

sufficient among the freely available partitions available in the

main memory. If a large process comes at a later stage, then

memory will not have space to accommodate it.

Worst fit algorithm Implementation:
1- Input memory blocks and processes with sizes.
2- Initialize all memory blocks as free.
3- Start by picking each process and find the
 maximum block size that can be assigned to
 current process i.e., find max(bockSize[1],
 blockSize[2],.....blockSize[n]) >
 processSize[current], if found then assign
 it to the current process.
5- If not then leave that process and keep checking
 the further processes.

--

Output
Process No. Process Size Block no.

 1 212 5

 2 417 2

 3 112 5

 4 426 Not Allocated

#include <iostream>
#include <cstring>
using namespace std;

void worstFit(int blockSize[], int m, int processSize[], int n) {
 int allocation[n];
 memset(allocation, -1, sizeof(allocation));

 for (int i = 0; i < n; i++) {
 int wstIdx = -1;
 for (int j = 0; j < m; j++) {
 if (blockSize[j] >= processSize[i]) {
 if (wstIdx == -1 || blockSize[wstIdx] < blockSize[j]) {
 wstIdx = j;
 }
 }
 }

 if (wstIdx != -1) {
 allocation[i] = wstIdx;
 blockSize[wstIdx] -= processSize[i];
 }
 }

 cout << "\nProcess No.\t Process Size\t Block no.\n";
 for (int i = 0; i < n; i++) {
 cout << " " << i + 1 << "\t\t" << processSize[i] << "\t\t";
 if (allocation[i] != -1)
 cout << allocation[i] + 1;
 else
 cout << "Not Allocated";
 cout << endl;
 }
}

int main() {
 int blockSize[] = {150, 420, 280, 310, 420};
 int processSize[] = {305, 220, 270, 140, 390};
 int m = sizeof(blockSize) / sizeof(blockSize[0]);
 int n = sizeof(processSize) / sizeof(processSize[0]);

 worstFit(blockSize, m, processSize, n);

 return 0;
}

Among the CPU scheduling strategies, Round Robin Scheduling is one of the most
efficient and the most widely used scheduling algorithm which finds its employability
not only in process scheduling in operating systems but also in network scheduling.

Round Robin (RR) Scheduling

This scheduling strategy derives its name from an age old round-robin principle
which advocated that all participants are entitled to equal share of assets or
opportunities in a turn wise manner. In RR scheduling, each process gets equal time
slices (or time quanta) for which it executes in the CPU in turn wise manner. When a
process gets its turn, it executes for the assigned time slice and then relinquishes the
CPU for the next process in queue. If the process has burst time left, then it is sent to
the end of the queue. Processes enter the queue on first come first serve basis.

Round Robin scheduling is preemptive, which means that a running process can be
interrupted by another process and sent to the ready queue even when it has not
completed its entire execution in CPU. It is a preemptive version of First Come First
Serve (FCFS) scheduling algorithm.

Working Principle of Round Robin Scheduling

 Any new process that arrives the system is inserted at the end of the ready
queue in FCFS manner.

 The first process in the queue is removed and assigned to the CPU.
 If the required burst time is less than or equal to the time quantum, the

process runs to completion. The scheduler is invoked when the process
completes executing to let in the next process in the ready queue to the CPU.

 If the required burst time is more than the time quantum, the process
executes up to the allotted time quantum. Then its PCB (process control
block) status is updated and it is added to the end of the queue. Context
switch occurs and the next process in the ready queue is assigned to the CPU.

 The above steps are repeated until there are no more processes in the ready
queue.

We can understand the workings RR scheduling algorithm through the aid of the
following example.

Example of Round Robin Scheduling

Let us consider a system that has four processes which have arrived at the same time
in the order P1, P2, P3 and P4. The burst time in milliseconds of each process is given
by the following table −

Process CPU Burst Times in ms

P1 8

P2 10

P3 6

P4 4

Let us consider time quantum of 2ms and perform RR scheduling on this. We will
draw GANTT chart and find the average turnaround time and average waiting time.

GANTT Chart with time quantum of 2ms

Average Turnaround Time

Average TAT = Sum of Turnaround Time of each Process / Number of Processes

=(TATP1+TATP2+TATP3+TATP4)/4

(24 + 28 + 22 + 16) / 4 = 22.5 ms

In order to calculate the waiting time of each process, we multiply the time quantum
with the number of time slices the process was waiting in the ready queue.

Average Waiting Time

Average WT = Sum of Waiting Time of Each Process / Number of processes

=(WTP1+WTP2+WTP3+WTP4)/4

= (8*2 + 9*2+ 8*2+ 6*2) / 4 = 15.5 ms

#include <iostream>

/*at = Arrival time,
bt = Burst time,
time_quantum= Quantum time
tat = Turn around time,
wt = Waiting time*/

using namespace std;

int main(){
 int i,n,time,remain,temps=0,time_quantum;

 int wt=0,tat=0;

 cout<<"Enter the total number of process="<<endl;
 cin>>n;

 remain=n;

 int at[n];
 int bt[n];
 int rt[n];

 cout<<"Enter the Arrival time, Burst time for All the processes"<<endl;
 for(i=0;i<n;i++)
 {
 cout<<"Arrival time for process "<<i+1<<endl;
 cin>>at[i];
 cout<<"Burst time for process "<<i+1<<endl;
 cin>>bt[i];
 rt[i]=bt[i];
 }

 cout<<"Enter the value of time QUANTUM:"<<endl;
 cin>>time_quantum;

 cout<<"\n\nProcess\t\t:Turnaround Time:Waiting Time\n\n";
 for(time=0,i=0;remain!=0;)
 {
 if(rt[i]<=time_quantum && rt[i]>0)
 {
 time += rt[i];

 rt[i]=0;
 temps=1;
 }

 else if(rt[i]>0)
 {
 rt[i] -= time_quantum;

 time += time_quantum;

 }

 if(rt[i]==0 && temps==1)
 {
 remain--;

 printf("Process{%d}\t:\t%d\t:\t%d\n",i+1,time-at[i],time-at[i]-bt[i]);
 cout<<endl;

 wt += time-at[i]-bt[i];
 tat += time-at[i];
 temps=0;
 }

 if(i == n-1)
 i=0;
 else if(at[i+1] <= time)
 i++;
 else
 i=0;
 }

 cout<<"Average waiting time "<<wt*1.0/n<<endl;
 cout<<"Average turn around time "<<tat*1.0/n<<endl;;

 return 0;
}

Deadlock Avoidance Algorithm (Banker’s
Algorithm)
The algorithm makes use of numerous data structures that change over time:

Available
A vector of length m represents the number of accessible resources of each
category.

Allocation
An n*m matrix indicates the number of resources of each kind currently
assigned to a process. The column represents the resource, while the rows
represent the process.

Request
A n*m matrix represents each process's current request. Process Pi is
requesting k additional instances of resource type Rj if request[i][j] = k.
The Banker's Algorithm is a deadlock avoidance and resource allocation
algorithm.
It determines if allocating a resource will cause a deadlock or whether
allocating a resource to a process is safe, and if not, the resource is not
assigned to that process.
Determining a safe sequence (even if it is only one) ensures that the system
does not enter a state of deadlock.

Example:
********** Deadlock Detection Algorithm ************
Enter the no of Processes 3
Enter the no of resource instances 3
Enter the Max Matrix
3 6 8
4 3 3
3 4 4
Enter the Allocation Matrix
3 3 3
2 0 3
1 2 4
Enter the available Resources
1 2 0
Process Allocation Max Available
P1 3 3 3 3 6 8 1 2 0
P2 2 0 3 4 3 3
P3 1 2 4 3 4 4

system is in Deadlock and the Deadlock process are
P0 P1 P2

https://www.naukri.com/code360/library/data-structure

// C++ program to illustrate Banker's Algorithm
#include<iostream>
using namespace std;

// Number of processes
const int P = 5;

// Number of resources
const int R = 3;

// Function to find the need of each process
void calculateNeed(int need[P][R], int maxm[P][R],
 int allot[P][R])
{
 // Calculating Need of each P
 for (int i = 0 ; i < P ; i++)
 for (int j = 0 ; j < R ; j++)

 // Need of instance = maxm instance -
 // allocated instance
 need[i][j] = maxm[i][j] - allot[i][j];
}

// Function to find the system is in safe state or not
bool isSafe(int processes[], int avail[], int maxm[][R],
 int allot[][R])
{
 int need[P][R];

 // Function to calculate need matrix
 calculateNeed(need, maxm, allot);

 // Mark all processes as infinish
 bool finish[P] = {0};

 // To store safe sequence
 int safeSeq[P];

 // Make a copy of available resources
 int work[R];
 for (int i = 0; i < R ; i++)
 work[i] = avail[i];

 // While all processes are not finished
 // or system is not in safe state.
 int count = 0;
 while (count < P)
 {
 // Find a process which is not finish and
 // whose needs can be satisfied with current
 // work[] resources.
 bool found = false;
 for (int p = 0; p < P; p++)
 {
 // First check if a process is finished,
 // if no, go for next condition
 if (finish[p] == 0)
 {
 // Check if for all resources of
 // current P need is less

 // than work
 int j;
 for (j = 0; j < R; j++)
 if (need[p][j] > work[j])
 break;

 // If all needs of p were satisfied.
 if (j == R)
 {
 // Add the allocated resources of
 // current P to the available/work
 // resources i.e.free the resources
 for 킋튅ॵ ァ 泚 茀◌ೀ 诃쏂삋 噓 啗j쎉횉춉 Ｑ튅 啾삅 碃Ǹ⡵ 茌ෂ ◌ ҉ 褤룘ҋ 茤◌ೀΉ 炉웼 픶킉෨ 觿 诇 蔃 瓀 褐 诺ɼ 凨 觿 㮉 嵚 幟썛삋 㓿 褤 藉 瓒 謃 韩쏿삋 ◌ႇ 킋튅ॵ ァ 泚 茀◌ೀ 诃쏂삋 噓 啗j쎉횉춉 Ｑ튅 啾삅 碃Ǹ⡵ 茌ෂ ◌ ҉ 褤룘ҋ 茤◌ೀΉ 炉웼 픶킉෨ 觿 诇 蔃 瓀 褐 诺ɼ 凨 觿 㮉 嵚 幟썛삋 㓿 褤 藉 瓒 謃 韩쏿삋 ◌ႇ튅 ٔ 騘 跃@ 襒맢 namespace std;
 work[k] += allot[p][k];

 // Add this process to safe sequence.
 safeSeq[count++] = p;

 // Mark this p as finished
 finish[p] = 1;

 found = true;
 }
 }
 }

 // If we could not find a next process in safe
 // sequence.
 if (found == false)
 {
 cout << "System is not in safe state";
 return false;
 }
 }

 // If system is in safe state then
 // safe sequence will be as below
 cout << "System is in safe state.\nSafe"
 " sequence is: ";
 for (int i = 0; i < P ; i++)
 cout << safeSeq[i] << " ";

 return true;
}

// Driver code
int main()
{
 int processes[] = {0, 1, 2, 3, 4};

 // Available instances of resources
 int avail[] = {0, 0, 0};

 // Maximum R that can be allocated
 // to processes
 int maxm[][R] = {{0, 0, 0},
 {2, 0, 2},
 {0, 0, 0},
 {1, 0, 0},
 {0, 0, 2}};

 // Resources allocated to processes
 int allot[][R] = {{0, 1, 0},
 {2, 0, 0},
 {3, 0, 3},
 {2, 1, 1},
 {0, 0, 2}};

 // Check system is in safe state or not
 isSafe(processes, avail, maxm, allot);

 return 0;
}

